Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluidized bed reactor scale

Sasol uses both fixed-bed reactors and transported fluidized-bed reactors to convert synthesis gas to hydrocarbons. The multitubular, water-cooled fixed-bed reactors were designed by Lurgi and Ruhrchemie, whereas the newer fluidized-bed reactors scaled up from a pilot unit by Kellogg are now known as Sasol Synthol reactors. The two reactor types use different iron-based catalysts and give different product distributions. [Pg.199]

Recent advances in Eischer-Tropsch technology at Sasol include the demonstration of the slurry-bed Eischer-Tropsch process and the new generation Sasol Advanced Synthol (SAS) Reactor, which is a classical fluidized-bed reactor design. The slurry-bed reactor is considered a superior alternative to the Arge tubular fixed-bed reactor. Commercial implementation of a slurry-bed design requires development of efficient catalyst separation techniques. Sasol has developed proprietary technology that provides satisfactory separation of wax and soHd catalyst, and a commercial-scale reactor is being commissioned in the first half of 1993. [Pg.164]

More recently, Sasol commercialized a new type of fluidized-bed reactor and was also operating a higher pressure commercial fixed-bed reactor (38). In 1989, a commercial scale fixed fluid-bed reactor was commissioned having a capacity similar to existing commercial reactors at Sasol One (39). This effort is aimed at expanded production of higher value chemicals, in particular waxes (qv) and linear olefins. [Pg.81]

The use of a fluidized-bed reactor is possible only when the reactants are essentiaUy in the gaseous phase. Eluidized-beds are not suitable for middle distiUate synthesis, where a heavy wax is formed. Eor gasoline synthesis processes like the MobU MTG process and the Synthol process, such reactors are especiaUy suitable when frequent or continuous regeneration of the catalyst is required. Slurry reactors and ebuUiating-bed reactors comprising a three-phase system with very fine catalyst are, in principle, suitable for middle distiUate and wax synthesis, but have not been appHed on a commercial scale. [Pg.277]

SASOL has pursued the development of alternative reactors to overcome specific operational difficulties encountered with the fixed-bed and entrained-bed reactors. After several years of attempts to overcome the high catalyst circulation rates and consequent abrasion in the Synthol reactors, a bubbling fluidized-bed reactor 1 m (3.3 ft) in diameter was constructed in 1983. Following successflil testing, SASOL designed and construc ted a full-scale commercial reac tor 5 m (16.4 ft) in diameter. The reactor was successfully commissioned in 1989 and remains in operation. [Pg.2377]

As mentioned in Section 2.2 (Fixed-Bed Reactors) and in the Micro activity test example, even fluid-bed catalysts are tested in fixed-bed reactors when working on a small scale. The reason is that the experimental conditions in laboratory fluidized-bed reactors can not even approach that in production units. Even catalyst particle size must be much smaller to get proper fluidization. The reactors of ARCO (Wachtel, et al, 1972) and that of Kraemer and deLasa (1988) are such attempts. [Pg.42]

The value for is conservatively interpreted as the particle diameter. This is a perfectly feasible size for use in a laboratory reactor. Due to pressure-drop limitations, it is too small for a full-scale packed bed. However, even smaller catalyst particles, dp 50 yum, are used in fluidized-bed reactors. For such small particles we can assume rj=l, even for the 3-nm pore diameters found in some cracking catalysts. [Pg.365]

As mentioned in Section 11.3, fluidized-bed reactors are difficult to scale. One approach is to build a cold-flow model of the process. This is a unit in which the solids are fluidized to simulate the proposed plant, but at ambient temperature and with plain air as the fluidizing gas. The objective is to determine the gas and solid flow patterns. Experiments using both adsorbed and nonadsorbed tracers can be used in this determination. The nonadsorbed tracer determines the gas-phase residence time using the methods of Chapter 15. The adsorbed tracer also measures time spent on the solid surface, from which the contact time distribution can be estimated. See Section 15.4.2. [Pg.430]

Another important challenge is to enhance the reliability of the design and scale up of multi-phase reactors, such as fluidized bed reactors and bubble-colunms. The design uncertainty caused by the complex flow in these reactors has often led to the choice of a reactor configuration that is more reliable but less efficient. An example is Mobil use a packed-bed reactor for the methanol to gasoline process in New Zealand, even though a... [Pg.2]

Fluidized bed reactors were first employed on a large scale for the catalytic cracking of petroleum fractions, but in recent years they have been employed for an increasingly large variety of reactions, both catalytic and non-catalytic. The catalytic reactions include the partial oxidation of naphthalene to phthalic anhydride and the formation of acrylonitrile from propylene, ammonia, and air. The noncatalytic applications include the roasting of ores and Tie fluorination of uranium oxide. [Pg.429]

On the basis of different assumptions about the nature of the fluid and solid flow within each phase and between phases as well as about the extent of mixing within each phase, it is possible to develop many different mathematical models of the two phase type. Pyle (119), Rowe (120), and Grace (121) have critically reviewed models of these types. Treatment of these models is clearly beyond the scope of this text. In many cases insufficient data exist to provide critical tests of model validity. This situation is especially true of large scale reactors that are the systems of greatest interest from industry s point of view. The student should understand, however, that there is an ongoing effort to develop mathematical models of fluidized bed reactors that will be useful for design purposes. Our current... [Pg.522]

DeGroot, J. H., Scaling-up of Gas-fluidized Bed Reactors, Proc. of the Int. Symp. on Fluidization, (A. A. H. Drinkenburg, ed.), Netherlands University Press, Amsterdam (1967)... [Pg.105]

In Section I, we mentioned that the TFM can simulate fluidized beds at engineering scales (height 1-2 m), and that the large-scale industrial fluidized-bed reactors (diameter 1-5m, height 3-20m) are still far beyond its capabilities. Clearly, it would be highly desirable to predict the properties of gas-solid flows at the industrial scale however at present, there is no fully evolved model— based on fundamental principles—which is capable of this. In this section, we outline some new ideas in this direction that have been developed both at the... [Pg.131]

An advantage of this approach to model large-scale fluidized bed reactors is that the behavior of bubbles in fluidized beds can be readily incorporated in the force balance of the bubbles. In this respect, one can think of the rise velocity, and the tendency of rising bubbles to be drawn towards the center of the bed, from the mutual interaction of bubbles and from wall effects (Kobayashi et al., 2000). In Fig. 34, two preliminary calculations are shown for an industrial-scale gas-phase polymerization reactor, using the discrete bubble model. The geometry of the fluidized bed was 1.0 x 3.0 x 1.0 m (w x h x d). The emulsion phase has a density of 400kg/m3, and the apparent viscosity was set to 1.0 Pa s. The density of the bubble phase was 25 g/m3. The bubbles were injected via 49 nozzles positioned equally distributed in a square in the middle of the column. [Pg.142]

When we are interested in the reproducible preparation of metal-supported catalysts it is also necessary to integrate the mesoscopic scale. Indeed, the deposit needs to be homogeneous, with particles anchored not only on all the support grains but also in their porosity. The use of CVD-fluidized bed reactors, for which we have gained some experience [85, 86], is one of the most elegant ways to master a process that fulfils these requirements under relatively mild conditions. [Pg.370]


See other pages where Fluidized bed reactor scale is mentioned: [Pg.653]    [Pg.374]    [Pg.389]    [Pg.279]    [Pg.313]    [Pg.314]    [Pg.306]    [Pg.653]    [Pg.374]    [Pg.389]    [Pg.279]    [Pg.313]    [Pg.314]    [Pg.306]    [Pg.83]    [Pg.83]    [Pg.456]    [Pg.169]    [Pg.160]    [Pg.466]    [Pg.299]    [Pg.3]    [Pg.658]    [Pg.292]    [Pg.429]    [Pg.429]    [Pg.430]    [Pg.485]    [Pg.521]    [Pg.522]    [Pg.110]    [Pg.110]    [Pg.654]    [Pg.654]    [Pg.674]    [Pg.66]    [Pg.74]    [Pg.252]    [Pg.359]    [Pg.152]    [Pg.17]    [Pg.481]    [Pg.485]   
See also in sourсe #XX -- [ Pg.313 , Pg.314 ]




SEARCH



Bed scale

Fluidized reactors

Scale fluidized beds

Scaling fluidized-bed reactors

Scaling fluidized-bed reactors

Scaling reactors

© 2024 chempedia.info