Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluidization cyclone

A generic multipurpose fluidized bed is illustrated in Figure 2 (1). The soHds are contained in a vessel and gas is introduced into the system via a distributor, which is typically a drilled plate at the bottom of the vessel. A plenum chamber is provided below the distributor plate. The height of the soHds level above the distributor is called the bed height, and the vertical space above the bed height is called the freeboard. A splash zone may exist as a transition between the bed and freeboard. Cyclones, located either in the freeboard or external to the vessel, are used to remove soHds from the gas stream. Diplegs can return entrained soHds directly to the bed. [Pg.69]

Fig. 2. Multipurpose fluidized bed where 1 represents the sheU 2, soHd particles 3, the blower 4, the gas distributor 5, the heat exchanger for fluidizing gas 6, internal heating or cooling 7, external heating or cooling 8, cyclones 9, the soHds feeder 10, soHds offtake 11, Hquid feed 12, the freeboard 13, the... Fig. 2. Multipurpose fluidized bed where 1 represents the sheU 2, soHd particles 3, the blower 4, the gas distributor 5, the heat exchanger for fluidizing gas 6, internal heating or cooling 7, external heating or cooling 8, cyclones 9, the soHds feeder 10, soHds offtake 11, Hquid feed 12, the freeboard 13, the...
The turbulent fluidized bed has a similar or slightly lower soHds volume fraction than the vigorously bubbling bed. There is considerable transport of soHds out of the turbulent bed and the bed level is not very distinct. Large-scale cyclones are needed to return soHds to the bed. On average, the bed inventory passes through the cyclones several times per hour. [Pg.74]

Circulating fluidized beds (CFBs) are high velocity fluidized beds operating well above the terminal velocity of all the particles or clusters of particles. A very large cyclone and seal leg return system are needed to recycle sohds in order to maintain a bed inventory. There is a gradual transition from turbulent fluidization to a truly circulating, or fast-fluidized bed, as the gas velocity is increased (Fig. 6), and the exact transition point is rather arbitrary. The sohds are returned to the bed through a conduit called a standpipe. The return of the sohds can be controUed by either a mechanical or a nonmechanical valve. [Pg.81]

The basic fluid-bed unit consists of a refractory-lined vessel, a perforated plate that supports a bed of granular material and distributes air, a section above the fluid bed referred to as freeboard, an air blower to move air through the unit, a cyclone to remove all but the smallest particulates and return them to the fluid bed, an air preheater for thermal economy, an auxiUary heater for start-up, and a system to move and distribute the feed in the bed. Air is distributed across the cross section of the bed by a distributor to fluidize the granular soflds. Over a proper range of airflow velocities, usually 0.8-3.0 m/s, the sohds become suspended in the air and move freely through the bed. [Pg.46]

The iron carbide process is alow temperature, gas-based, fluidized-bed process. Sized iron oxide fines (0.1—1.0 mm) are preheated in cyclones or a rotary kiln to 500°C and reduced to iron carbide in a single-stage, fluidized-bed reactor system at about 590°C in a process gas consisting primarily of methane, hydrogen, and some carbon monoxide. Reduction time is up to 18 hours owing to the low reduction temperature and slow rate of carburization. The product has the consistency of sand, is very britde, and contains approximately 6% carbon, mostly in the form of Ee C. [Pg.431]

Fresh butane mixed with recycled gas encounters freshly oxidized catalyst at the bottom of the transport-bed reactor and is oxidized to maleic anhydride and CO during its passage up the reactor. Catalyst densities (80 160 kg/m ) in the transport-bed reactor are substantially lower than the catalyst density in a typical fluidized-bed reactor (480 640 kg/m ) (109). The gas flow pattern in the riser is nearly plug flow which avoids the negative effect of backmixing on reaction selectivity. Reduced catalyst is separated from the reaction products by cyclones and is further stripped of products and reactants in a separate stripping vessel. The reduced catalyst is reoxidized in a separate fluidized-bed oxidizer where the exothermic heat of reaction is removed by steam cods. The rate of reoxidation of the VPO catalyst is slower than the rate of oxidation of butane, and consequently residence times are longer in the oxidizer than in the transport-bed reactor. [Pg.457]

Industrial Uses. Large industrial faciUties, particularly those using cyclone boilers or fluidized-bed boilers, are potential markets. In addition, several vendors of small- and medium-sized industrial energy and steam faciUties are marketing units capable of using I DE. As the availabiUty of I DE expands with new producers entering the market, it is hoped that the industrial use of I DE will also expand (7). [Pg.13]

Fluidized combustion of coal entails the burning of coal particles in a hot fluidized bed of noncombustible particles, usually a mixture of ash and limestone. Once the coal is fed into the bed it is rapidly dispersed throughout the bed as it bums. The bed temperature is controUed by means of heat exchanger tubes. Elutriation is responsible for the removal of the smallest soHd particles and the larger soHd particles are removed through bed drain pipes. To increase combustion efficiency the particles elutriated from the bed are coUected in a cyclone and are either re-injected into the main bed or burned in a separate bed operated at lower fluidizing velocity and higher temperature. [Pg.526]

Dust Separation It is usuaUy necessaiy to recover the solids carried by the gas leaving the disengaging space or freeboard of the fluidized becl GeneraUy, cyclones are used to remove the major portion of these sohds (see Gas-Sohds Separation ). However, in a few cases, usuaUy on small-scale units, filters are employed without the use of cyclones to reduce the loading of solids in the gas. For high-temperature usage, either porous ceramic or sintered metal has been employed. Multiple units must be provided so that one unit can be blown back with clean gas while one or more are filtering. [Pg.1570]

Containment (Explosion-Pressure-Resistant Design for Maximum Explosion Overpressure) An explosion-resistant construction is understood to mean the possibihty of designing vessels and equipment for the full maximum explosion ove (pressure, which is generally of the order P = 9 bar. The explosion-resistant vessel can then be designed as explosion pressure resistant or explosion pressure shock resistant. This protective measure is generally employed when small vessel volumes need to be protected, such as small filter units, fluidized-bed dryers, cyclones, rotaiy valves, or mill housings. [Pg.2326]

Calcium oxide (lime) Rotary kilns, vertical and shaft kilns, fluidized bed furnaces Particulate matter Cyclones plus secondary collectors (baghouse, ESP, wet scrubbers, granular bed filters, wet cyclones)... [Pg.498]

A salient feature of the fluidized bed reactor is that it operates at nearly constant temperature and is, therefore, easy to control. Also, there is no opportunity for hot spots (a condition where a small increase in the wall temperature causes the temperature in a certain region of the reactor to increase rapidly, resulting in uncontrollable reactions) to develop as in the case of the fixed bed reactor. However, the fluidized bed is not as flexible as the fixed bed in adding or removing heat. The loss of catalyst due to carryover with the gas stream from the reactor and regenerator may cause problems. In this case, particle attrition reduces their size to such an extent where they are no longer fluidized, but instead flow with the gas stream. If this occurs, cyclone separators placed in the effluent lines from the reactor and the regenerator can recover the fine particles. These cyclones remove the majority of the entrained equilibrium size catalyst particles and smaller fines. The catalyst fines are attrition products caused by... [Pg.234]

The fluidization characteristics of an FCC catalyst largely depend on the unit s mechanical configuration. The percentage of less than 40 microns in the circulating inventory is a function of cyclone efficiency. In units with good catalyst circulation, it may be economical to minim the fraction of less than 40-micron particles. This is because after a few cycles, most of the 0-40 microns will escape the unit via the cyclones. [Pg.100]

PSD is an important indicator of the fluidization characteristics of the catalyst, cyclone performance, and the attrition resistance of the catalyst. A drop in fines content indicates the loss of cyclone efficiency. This can be confirmed by the particle size of fines collected downstream of the cyclones. An increase in fines content of the E-cat indicates increased catalyst attrition. This can be due to changes in fresh catalyst binder quality, steam leaks, and/or internal mechanical problems, such as those involving the air distributor or slide vah es. [Pg.107]

Practical operations are conducted at two or more multiples of the minimum fluidizing velocity. In reactors, the entrained material is recovered with cyclones and returned to process. In dryers, the fine particles dry most quickly so the entrained material need not be recycled. [Pg.12]

An experimental fluidized bed reactor has a 2.5 cm in diameter and 230 cm in height, and the distributor has 32 holes and each hole was 2 mm in diameter. 200 mesh net was put on the distributor to prevent particles from falhng down. The cyclone was made by standard proportion to collect fine particles. Air flow rate was controlled by a flow meter, CO2 (99.9%) flow rate was controlled by mass flow controller and then 10% CO2 inlet concentration was maintained by mixing in a mixing chamber. CO2 outlet concentration was also measured by CO2 analyzer (CD 95, Geotechnical instruments, England). [Pg.550]


See other pages where Fluidization cyclone is mentioned: [Pg.74]    [Pg.79]    [Pg.79]    [Pg.79]    [Pg.81]    [Pg.81]    [Pg.83]    [Pg.6]    [Pg.166]    [Pg.9]    [Pg.107]    [Pg.418]    [Pg.216]    [Pg.217]    [Pg.260]    [Pg.1564]    [Pg.1567]    [Pg.1570]    [Pg.1571]    [Pg.1589]    [Pg.1896]    [Pg.2104]    [Pg.2387]    [Pg.2398]    [Pg.2401]    [Pg.43]    [Pg.75]    [Pg.415]    [Pg.417]    [Pg.503]    [Pg.283]    [Pg.495]    [Pg.502]    [Pg.85]   
See also in sourсe #XX -- [ Pg.1010 ]




SEARCH



Circulating fluidized beds cyclones

Cyclone

Dense-phase fluidized beds cyclones

© 2024 chempedia.info