Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distributor plate

A generic multipurpose fluidized bed is illustrated in Figure 2 (1). The soHds are contained in a vessel and gas is introduced into the system via a distributor, which is typically a drilled plate at the bottom of the vessel. A plenum chamber is provided below the distributor plate. The height of the soHds level above the distributor is called the bed height, and the vertical space above the bed height is called the freeboard. A splash zone may exist as a transition between the bed and freeboard. Cyclones, located either in the freeboard or external to the vessel, are used to remove soHds from the gas stream. Diplegs can return entrained soHds directly to the bed. [Pg.69]

Commercial chlorohydrin reactors are usually towers provided with a chlorine distributor plate at the bottom, an olefin distributor plate about half way up, a recirculation pipe to allow the chlorohydrin solution to be recycled from the top to the bottom of the tower, a water feed iato the recirculation pipe, an overflow pipe for the product solution, and an effluent gas takeoff (46). The propylene and chlorine feeds are controlled so that no free gaseous chlorine remains at the poiat where the propylene enters the tower. The gas lift effect of the feeds provides the energy for the recirculation of the reaction solution from the top of the tower. [Pg.73]

As above for high deformahility systems. In addition, increase compaction forces by increasing bed weight, or altering mixer impeller or fluid-bed distributor plate design. [Pg.1886]

Decrease impact velocity to reduce fragmentation Lower-formulation density. Decrease hed-agitation intensity (e.g., mixer impeller speed, fluid-hed excess gas velocity, drum rotation speed). Also strongly influenced hy distributor-plate design in fluid-heds, or impeller and chopper design in mixers. [Pg.1888]

Measurements in large fluidized beds of fine particles indicate that bubble coalescence often ceases within a short distance above the gas distributor plate. Indications from density measurements or single bubble velocities are that bubble velocity Ug and diameter often reach maximum stable values, which are invariant with height or fluidizing gas velocity. [Pg.37]

Pan-type distributor Plate with drilled/punched holes for liquid downflow and vapor risers. [Pg.275]

The process essentially involves passing air through a bottom furnace distributor plate and a fixed bed of sand. As air flow rates increase, the fixed bed becomes more unstable and bubbles of air appear (minimum fluidized condition). Above this minimum level, higher air flow rates produce—depending on design—either bubbling fluidized beds or circulating fluidized beds, and the fuel is introduced onto these beds. [Pg.58]

FIGURE 6.4 Horizontal ES chamber 1 — mobile phase reservoir, 2 — capillary siphon, 3 — small cover plate with distributor plate, 4 — base plate, 5 — adsorbent layer, 6 — carrier plate, 7 — main cover plate, 8 — additional cover plate used to close the chamber. (From Soczewinski, E., Planar Chromatography, Vol. 1, Kaiser, R.E., Ed., Huethig, Heidelberg, 1986, pp. 79-117. With permission.)... [Pg.134]

The important design parameters for a recirculating fluidized bed with a draft tube were identified by Yang and Keaims (1978a) as the gas bypassing characteristics of the distributor plate, the area ratio between the downcomer and the draft tube, the diameter ratio between the draft tube and the draft tube gas supply, the distance between the distributor plate and the draft tube inlet, and the area ratio of the draft tube gas supply and the concentric solids feeder. The design and operation of a recirculating fluidized bed with a draft tube are discussed below. [Pg.239]

The gas bypassing results obtained from tracer gas injection studies for a flat and a conical distributor plate are shown in Fig. 4. Theflow ratio, FR, is defined as the total gas flow supplied through the draft tube gas supply and the concentric solids feeder divided by the total gas flow supplied through the downcomer gas supply. The A and Y are the actual amounts of gas passing up the draft tube and the downcomer, respectively, determined from the tracer gas injection studies. If FR equals A Y. there is no gas bypassing. If FR is less than A Y. some of the flow supplied through the downcomer gas supply passes into the draft tube. If FR is larger than A/7, the reverse is true. [Pg.245]

Figure 4. Summary of gas bypassing data for a conical and a flat distributor plate. Figure 4. Summary of gas bypassing data for a conical and a flat distributor plate.
Effect of Distance between the Distributor Plate and the Draft Tube Inlet Figure 4 clearly indicates that the gas bypassing phenomenon depends not only on the design parameters but also on the operating conditions. For the conical plate at a distance from the draft tube inlet of L = 21.7 cm, gas bypasses from the draft tube side to the downcomer side at a high flow ratio and reverses the direction at a low flow ratio. When the conical plate was moved closer to the draft tube inlet atL = 14.1 cm, the gas bypassing direction was exclusively from the downcomer side to the draft tube side. [Pg.247]

Figure 5. Gas bypassing characteristics of conical distributor plates of different design configurations (No. 3 and No. 7 flows). Figure 5. Gas bypassing characteristics of conical distributor plates of different design configurations (No. 3 and No. 7 flows).
The effect of downcomer aeration, of distance between the distributor plate and the draft tube inlet, and of the distributor plate design configuration on solid circulation rate is discussed below. For ease of presentation for materials of different densities, the solid particle velocity in the downcomer rather than the solid circulation rate is used. [Pg.251]

Aeration of the downcomer can also be provided with a conical distributor plate (No. 3 flow) with greatly increased solids circulation rate as shown in Fig. 8. At lower downcomer aeration, the solids circulation rate is essentially similar to that without downcomer aeration at a distributor plate location ofL = 21.7 cm. At higher downcomer aeration, however, a substantial increase in solids circulation rate is realized with the same total gas flow rate. Apparently, a minimum aeration in the downcomer is required in order to increase substantially the solids circulation rate. For polyethylene beads, this critical aeration rate is at a downcomer superficial... [Pg.252]

The same kind of phenomenon was not observed when distributor plate was located closer to the draft tube inlet atL = 14.1 cm and when only No. 7 and No. 8 or No. 7 and No. 3 flows were used. When all three flow injection locations were used, substantial improvement in solids circulation rate is possible even at L = 14.1 cm as shown in Fig. 9. The critical downcomer aeration velocities (superficial velocities based on downcomer area) for the data shown in Fig. 9 were determined through tracer gas injection experiments to be 0.29 m/s at L = 21.7 cm and 0.22 m/s at L = 14.1 cm. [Pg.254]

Effect of Distributor Plate Design. Both conical distributor plates of included angles of 60° and 90° were used. They do not seem to affect the solids circulation rate as shown in Fig. 10. Proper location of the distributor plate and the gas nozzle, however, substantially increased the solids circulation rate. [Pg.254]

Figure 10. Comparison of solids circulation rate at different distributor plate design configurations. Figure 10. Comparison of solids circulation rate at different distributor plate design configurations.
Effect of Distance Between Distributor Plate and Draft Tube Inlet. As expected, the closer the distance between the distributor plate and the draft tube inlet the lower the solids circulation rate as shown in Figs. 8 and 9. This is not only because of the physical constriction created by locating the distributor plate too close to the draft tube inlet but also because of the different gas bypassing characteristics observed at different distributor plate locations as discussed earlier. When the distance between the distributor plate and the draft tube inlet becomes large, it can create start-up problems discussed in Yang et al. (1978). [Pg.257]

Design for Desired Solids Circulation Rate It is assumed that the total gas flow into the bed is known. When the operating fluidizing velocity is selected for the fluidized bed above the draft tube, the diameter of the vessel is determined. The final design decisions include selection of the draft tube diameter, the distributor plate design, the separation between the draft... [Pg.257]

The results of an example calculation for a recirculating fluidized bed coal devolatilizer of 0.51 m in diameter handling coal of average size 1200 pm at 870°C and 1550 kPa are presented in Fig. 11. The calculation is based on operating the fluidized bed above the draft tube at 4 times the minimum fluidization velocity. It is also based on the selection of a distributor plate to maintain the downcomer at the minimum fluidization condition. If the two-phase theory applies, this means that the slip velocity between the gas and the particles in the downcomer must equal to the interstitial minimum fluidizing velocity as shown below. [Pg.258]

A schematic of the two-dimensional test apparatus with three draft tubes is shown in Fig. 12. The two-dimensional bed is constructed with transparent Plexiglas plates in the front and aluminum plates at the back with a cross-section of 50.8 cm by 2.54 cm and 244 cm high. The three draft tubes have a cross-sectional area of 2.54 cm by 2.54 cm each and 91 cm high. The three draft tubes divide the bed into four separate downcomers. The two downcomers next to the side walls have a cross-section of 5.9 cm by 2.54 cm while the remaining two downcomers have a cross-section exactly two times, i.e., 11.8 cm by 2.54 cm. If all three draft tubes operate similarly, the bed should have three identical cells, each with a single draft tube. The distance between the draft tube inlet and the air distributor plate was maintained at a constant spacing of 5.1 cm throughout the experiments. [Pg.261]


See other pages where Distributor plate is mentioned: [Pg.260]    [Pg.168]    [Pg.528]    [Pg.2387]    [Pg.2398]    [Pg.478]    [Pg.267]    [Pg.110]    [Pg.414]    [Pg.415]    [Pg.557]    [Pg.146]    [Pg.255]    [Pg.32]    [Pg.104]    [Pg.236]    [Pg.244]    [Pg.246]    [Pg.247]    [Pg.254]    [Pg.257]    [Pg.258]    [Pg.320]    [Pg.323]    [Pg.337]    [Pg.360]    [Pg.361]   
See also in sourсe #XX -- [ Pg.254 , Pg.257 , Pg.361 ]




SEARCH



Distributor

© 2024 chempedia.info