Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluid catalytic cracking acidity

A mixture of monolauryl phosphate sodium salt and triethylamine in H20 was treated with glycidol at 80°C for 8 h to give 98% lauryl 2,3-dihydro-xypropyl phosphate sodium salt [304]. Dyeing aids for polyester fibers exist of triethanolamine salts of ethoxylated phenol-styrene adduct phosphate esters [294], Fatty ethanolamide phosphate surfactant are obtained from the reaction of fatty alcohols and fatty ethanolamides with phosphorus pentoxide and neutralization of the product [295]. A double bond in the alkyl group of phosphoric acid esters alter the properties of the molecule. Diethylethanolamine salt of oleyl phosphate is effectively used as a dispersant for antimony oxide in a mixture of xylene-type solvent and water. The composition is useful as an additive for preventing functional deterioration of fluid catalytic cracking catalysts for heavy petroleum fractions. When it was allowed to stand at room temperature for 1 month it shows almost no precipitation [241]. [Pg.615]

The alkylation unit in a petroleum refinery is situated downstream of the fluid catalytic cracking (FCC) units. The C4 cut from the FCC unit contains linear butenes, isobutylene, n-butane, and isobutane. In some refineries, isobutylene is converted with methanol into MTBE. A typical modern refinery flow scheme showing the position of the alkylation together with an acid regeneration unit is displayed in Fig. 1. [Pg.253]

Catalytic cracking is a process that is currently performed exclusively over fluidized catalyst beds. The fluid catalytic cracking (FCC) process was introduced in 1942 and at that time replaced the conventional moving bed processes. These early processes were based on acid-treated clays as acidic catalysts. The replacement of the amorphous aluminosilicate catalysts by Faujasite-type zeolites in the early-1960s is regarded as a major improvement in FCC performance. The new acidic catalysts had a remarkable activity and produced substantially higher yields than the old ones. [Pg.110]

Fluid catalytic cracking over an acid catalyst converts residual hydrocarbons from the vacuum gas oil fraction into valuable olefins, gasoline, and diesel products. The catalytic cracking proceeds... [Pg.110]

The first cracking catalysts were acid-leached montmorillonite clays. The acid leach was to remove various metal impurities, principally iron, copper, and nickel, that could exert adverse effects on the cracking performance of a catalyst. The catalysts were first used in fixed- and moving-bed reactor systems in the form of shaped pellets. Later, with the development of the fluid catalytic cracking process, clay catalysts were made in the form of a ground, sized powder. Clay catalysts are relatively inexpensive and have been used extensively for many years. [Pg.83]

Most of the commercial zeolite catalyzed processes occur either through acid catalysis fluid catalytic cracking (FCC), aromatic alkylation, methanol to olefins (MTO),... [Pg.234]

The modem gasolines are produced by blending products from cmde oil distillation, that is, fluid catalytic cracking, hydrocraking, reforming, coking, polymerization, isomerization, and alkylation.Two clear examples of the possible use of solid-acid catalysts in refining processes are the isomerization of lineal alkanes and the alkylation of isobutene with butanes. In both these cases, and due to the octane... [Pg.254]

The processes described below are the evolutionary offspring of the fluid catalytic cracking and the residuum catalytic cracking processes. Some of these newer processes use catalysts with different silica/alumina ratios as acid support of metals such as Mo, Co, Ni, and W. In general the first catalyst used to remove... [Pg.328]

Cracking reactions are carried out in order to reduce the molecular size and to produce more valuable transport fuel fractions (gasoline and diesel). Fluid catalytic cracking is acid catalyzed (zeolites) and a complex network of carbe-nium ion reactions occur leading to size reduction and isomerization (see Chapter 4, Section 4.4). Hydrogenation also takes place in hydrocracking, as well as cracking. [Pg.24]

Cerqueira and co-workers203 confirmed the appearance of the of the tetrahedral aluminium and phosphorus in AlPO-like crystalline structures both in beta (BEA) and in MOR zeolites treated with phosphoric acid. 31P MAS,27Al MAS and TQM AS NMR spectra permitted the species present in the samples to be assigned. Possibly, besides the the Altet-f species, other Al species are also taking part in the activity and selectivity of the catalysts. The formation of Alocl o P can also contribute to the increase in the activity by preventing further dealumination. Dual zeolite additives have no impact on the quality of naphtha when compared to MFI-based additives, which are used in the fluid catalytic cracking processes. [Pg.98]

The most important process involving a zeolite, Fluid Catalytic Cracking (FCC) uses a catalyst containing an acid FAU zeolite (Chapter 5). Other examples of processes using acid zeolite catalysts will be examined in this book, like Methanol to Olefins (Chapter 12), Acetylation (Chapter 14) etc. [Pg.4]

Microporous and, more recently, mesoporous solids comprise a class of materials with great relevance to catalysis (cf. Chapters 2 and 4). Because of the well-defined porous systems active sites can now be built in with molecular precision. The most important catalysts derived from these materials are the acid zeolites. The acid site is defined by the crystalline structure and exhibits great chemical and steric selectivities for catalytic conversions, such as fluid catalytic cracking and alkane isomerization (cf. Chapter 2). In Section 9.5 we discuss the synthesis of zeolites and, briefly, of mesoporous solids. [Pg.434]

As catalysts, zeolites have found their most important application in petroleum refining processes. Their acid function is used in Fluid Catalytic Cracking (FCC), in hydroisomerisation of light alkane fraction as well as in ohgomerisation and isomerisation steps to upgrade the hquid fuels into gasohne and diesel. The combination of two different zeolites in the same industrial process is illustrated in the Shell-UOP TIP process an acidic zeolite, MOR, is used for isomerisation and the neutral LTA is used as molecular sieve for separation as shown in the scheme below (Figure 5.3). [Pg.119]


See other pages where Fluid catalytic cracking acidity is mentioned: [Pg.2785]    [Pg.69]    [Pg.152]    [Pg.188]    [Pg.155]    [Pg.17]    [Pg.267]    [Pg.143]    [Pg.201]    [Pg.292]    [Pg.148]    [Pg.231]    [Pg.12]    [Pg.135]    [Pg.117]    [Pg.425]    [Pg.99]    [Pg.1885]    [Pg.1287]    [Pg.2602]    [Pg.25]    [Pg.3]    [Pg.513]    [Pg.18]    [Pg.73]    [Pg.525]    [Pg.8]    [Pg.2785]    [Pg.1875]    [Pg.73]    [Pg.254]   
See also in sourсe #XX -- [ Pg.240 ]

See also in sourсe #XX -- [ Pg.270 ]




SEARCH



Acidizing fluids

Catalytic fluid

Cracking fluid

Fluid catalytic cracking

© 2024 chempedia.info