Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow sheets productivity

Figure 8. Flow sheet production of a nonbitter, soluble soy protein hydrolysate suitable for incorporation into soft drinks and other low pH foods. Figure 8. Flow sheet production of a nonbitter, soluble soy protein hydrolysate suitable for incorporation into soft drinks and other low pH foods.
SCHEMATIC OF POLYBED PSA PROCESS FLOW SHEET (Production of H2 from SHROG)... [Pg.31]

Fig. 1. (a) Process flow sheet for human insulin production, recovery, and purification (12) (b) corresponding steps in recovery of biosynthetic human... [Pg.43]

The unit has virtually the same flow sheet (see Fig. 2) as that of methanol carbonylation to acetic acid (qv). Any water present in the methyl acetate feed is destroyed by recycle anhydride. Water impairs the catalyst. Carbonylation occurs in a sparged reactor, fitted with baffles to diminish entrainment of the catalyst-rich Hquid. Carbon monoxide is introduced at about 15—18 MPa from centrifugal, multistage compressors. Gaseous dimethyl ether from the reactor is recycled with the CO and occasional injections of methyl iodide and methyl acetate may be introduced. Near the end of the life of a catalyst charge, additional rhodium chloride, with or without a ligand, can be put into the system to increase anhydride production based on net noble metal introduced. The reaction is exothermic, thus no heat need be added and surplus heat can be recovered as low pressure steam. [Pg.77]

Acrylic Acid Recovery. The process flow sheet (Fig. 3) shows equipment and conditions for the separations step. The acryUc acid is extracted from the absorber effluent with a solvent, such as butyl acetate, xylene, diisobutyl ketone, or mixtures, chosen for high selectivity for acryUc acid and low solubihty for water and by-products. The extraction is performed using 5—10 theoretical stages in a tower or centrifiigal extractor (46,61—65). [Pg.153]

Flow Sheet. Most purge-swing appHcations use two fixed-bed adsorbers to provide a continuous flow of feed and product (Fig. 16). Single beds are used when the flow to be treated is intermittent or cycHc. Because the purge flow is invariably greater than that of adsorption, purge is carried out in the down-flow direction to prevent bed lifting, and adsorption is up-flow. [Pg.284]

An extraction plant should operate at steady state in accordance with the flow-sheet design for the process. However, fluctuation in feed streams can cause changes in product quaUty unless a sophisticated system of feed-forward control is used (103). Upsets of operation caused by flooding in the column always force shutdowns. Therefore, interface control could be of utmost importance. The plant design should be based on (/) process control (qv) decisions made by trained technical personnel, (2) off-line analysis or limited on-line automatic analysis, and (J) control panels equipped with manual and automatic control for motor speed, flow, interface level, pressure, temperature, etc. [Pg.72]

Fig. 16. Two-hquid flotation flow sheet (39). The original ROM is kaolin (white clay) that contains 11% impurity in the form of mica, anatase, and siUca. Treatment produces high purity kaolin and a Ti02-rich fraction. A, Kaolin stockpile D, dispersant (sodium siUcate plus alkah) W, water K, kerosene C, collector (sodium oleate) RK, recycled kerosene S, screen M, inline mixer SPR, separator CFG, centrifuge P, product and T, to waste. Fig. 16. Two-hquid flotation flow sheet (39). The original ROM is kaolin (white clay) that contains 11% impurity in the form of mica, anatase, and siUca. Treatment produces high purity kaolin and a Ti02-rich fraction. A, Kaolin stockpile D, dispersant (sodium siUcate plus alkah) W, water K, kerosene C, collector (sodium oleate) RK, recycled kerosene S, screen M, inline mixer SPR, separator CFG, centrifuge P, product and T, to waste.
Fig. 4. Equipment flow sheet of elemental fluorine production and liquefaction plant, 9 t/d capacity. Step 1 purging residual F2 at rates indicated all but a trace of residual F2 is removed in 15min N2 purge is maintained for 1 h to remove last traces. Step 2 HF removal at rates indicated all but a trace of HF is... Fig. 4. Equipment flow sheet of elemental fluorine production and liquefaction plant, 9 t/d capacity. Step 1 purging residual F2 at rates indicated all but a trace of residual F2 is removed in 15min N2 purge is maintained for 1 h to remove last traces. Step 2 HF removal at rates indicated all but a trace of HF is...
Fig. 1. Simplified schematic flow sheet for the production of a moderate RDF, using trommel separation. Fig. 1. Simplified schematic flow sheet for the production of a moderate RDF, using trommel separation.
Furthermore, 60—100 L (14—24 gal) oil, having sulfur content below 0.4 wt %, could be recovered per metric ton coal from pyrolysis at 427—517°C. The recovered oil was suitable as low sulfur fuel. Figure 15 is a flow sheet of the Rocky Flats pilot plant. Coal is fed from hoppers to a dilute-phase, fluid-bed preheater and transported to a pyrolysis dmm, where it is contacted by hot ceramic balls. Pyrolysis dmm effluent is passed over a trommel screen that permits char product to fall through. Product char is thereafter cooled and sent to storage. The ceramic balls are recycled and pyrolysis vapors are condensed and fractionated. [Pg.94]

Fig. 1. Hydrogen production flow sheet, showing steam reforming, shift, hot potassium carbonate CO2 removal, and methanation. Fig. 1. Hydrogen production flow sheet, showing steam reforming, shift, hot potassium carbonate CO2 removal, and methanation.
Fig. 4. Simplified flow sheet for lime and limestone products. Fig. 4. Simplified flow sheet for lime and limestone products.
Production of a metal is usually achieved by a sequence of chemical processes represented as a flow sheet. A limited number of unit processes are commonly used in extractive metallurgy. The combination of these steps and the precise conditions of operations vary significantly from metal to metal, and even for the same metal these steps vary with the type of ore or raw material. The technology of extraction processes was developed in an empirical way, and technical innovations often preceded scientific understanding of the processes. [Pg.162]

Fig. 5. Flow sheet foi Sheiiitt-Goidon process for production of nickel and cobalt metals from sulfide ore. Fig. 5. Flow sheet foi Sheiiitt-Goidon process for production of nickel and cobalt metals from sulfide ore.
Methanol Synthesis. AH commercial methanol processes employ a synthesis loop, and Figure 6 shows a typical example as part of the overall process flow sheet. This configuration overcomes equiUbtium conversion limitations at typical catalyst operating conditions as shown in Figure 1. A recycle system that gives high overall conversions is feasible because product methanol and water can be removed from the loop by condensation. [Pg.278]

Flow Sheets. AH minerals processing operations function on the basis of a flow sheet depicting the flow of soHds and Hquids in the entire plant (6,13,14). The complexity of a flow sheet depends on the nature of the ore treated and the specifications for the final product. The basic operations in a flow sheet are size reduction (qv) (comminution) and/or size separation (see Separation, size), minerals separation, soHd—Hquid separation, and materials handling. The overaH flow sheet depends on whether the specification for the final mineral product is size, chemical composition, ie, grade, or both. Products from a quarry, for example, may have a size specification only, whereas metal concentrates have a grade specification. [Pg.394]

Each basic operation can be divided into one or more unit operations. Size reduction involves cnishing and grinding depending on the size of material handled, and these may be carried out in stages. Separations can be either soHds from soHds, based on size or mineral composition, or soHds from Hquids, ie, dewatering (qv). Size separation or classification is an integral part of any flow sheet, not only to meet product size specifications, but also to ensure a narrow size distribution for subsequent minerals separation circuits and to decrease the load and improve the efficiency of size reduction units which are energy intensive. [Pg.394]

By contrast, HLW from LWR fuel reprocessing is stored ia cooled, well-agitated, stainless steel tanks as an acidic nitrate solution having relatively few sohds. Modem PUREX flow sheets minimise the addition of extraneous salts, and as a result the HLW is essentially a fission-product nitrate solution. Dissolver soHds are centrifuged from the feed stream and are stored separately. Thus the HLW has a low risk of compromising tank integrity and has a favorable composition for solidification and disposal (11). [Pg.207]

Fig. 10. Flow sheet for the production of KNO —IMI process, where ( ) represents the product stream (-) the reaction solvent and (---)... Fig. 10. Flow sheet for the production of KNO —IMI process, where ( ) represents the product stream (-) the reaction solvent and (---)...
Fig. 2. Flow sheet for ethanolamine production. EO = ethylene oxide MEA, DEA, and TEA ate defined in Table 1. Fig. 2. Flow sheet for ethanolamine production. EO = ethylene oxide MEA, DEA, and TEA ate defined in Table 1.
Fig. 6. Flow sheet for ammonia production from Lurgi coal gasification. Fig. 6. Flow sheet for ammonia production from Lurgi coal gasification.
Ethylbenzene Hydroperoxide Process. Figure 4 shows the process flow sheet for production of propylene oxide and styrene via the use of ethylbenzene hydroperoxide (EBHP). Liquid-phase oxidation of ethylbenzene with air or oxygen occurs at 206—275 kPa (30—40 psia) and 140—150°C, and 2—2.5 h are required for a 10—15% conversion to the hydroperoxide. Recycle of an inert gas, such as nitrogen, is used to control reactor temperature. Impurities ia the ethylbenzene, such as water, are controlled to minimize decomposition of the hydroperoxide product and are sometimes added to enhance product formation. Selectivity to by-products include 8—10% acetophenone, 5—7% 1-phenylethanol, and <1% organic acids. EBHP is concentrated to 30—35% by distillation. The overhead ethylbenzene is recycled back to the oxidation reactor (170—172). [Pg.139]

The most volatile product (myristic acid) is a small fraction of the feed, whereas the least volatile product (oleic—stearic acids) is most of the feed, and the palmitic—oleic acid split has a good relative volatility. The palmitic—oleic acid split therefore is selected by heuristic (4) for the third column. This would also be the separation suggested by heuristic (5). After splitting myristic and palmitic acid, the final distillation sequence is pictured in Figure 1. Detailed simulations of the separation flow sheet confirm that the capital cost of this design is about 7% less than the straightforward direct sequence. [Pg.445]


See other pages where Flow sheets productivity is mentioned: [Pg.965]    [Pg.965]    [Pg.203]    [Pg.321]    [Pg.812]    [Pg.229]    [Pg.234]    [Pg.235]    [Pg.236]    [Pg.241]    [Pg.381]    [Pg.52]    [Pg.441]    [Pg.452]    [Pg.395]    [Pg.201]    [Pg.487]    [Pg.201]    [Pg.527]    [Pg.285]    [Pg.343]    [Pg.138]    [Pg.444]    [Pg.444]    [Pg.446]    [Pg.448]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Flow production

Flow sheets

Flow-sheeting

Product flow

Sheet production

© 2024 chempedia.info