Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zirconium fission product

In some nuclear reactors, U02 fuel elements in stainless steel cans are subjected to high rates of burning that is, substantial quantities of fission products are formed. As a result, appreciable amounts of 02 are liberated (from U02) which will then react either with the fission products (zirconium, molybdenum, cerium, etc.) or with the stainless steel of the can. Decide, with the help of Fig. 10.2 whether zirconium and molybdenum are oxidized in preference to the steel (T=750°C). (In fact sufficient reactive elements are formed to take up the oxygen.)... [Pg.169]

Figure 10.26 compares the low-concentration distribution coefficients of uranium, thorium, plutonium, protactinium, and the principal fission products. The spread between thorium and fission-product zirconium is greatest between 1 and 2 M HNO3, the range used in the decontamination step of the acid Thorex process. Because the distribution coefficient of protactinium is close to that of thorium, it is necessary to remove protactinium or complex it with fluoride or phosphate ion to prevent its extraction with thorium. [Pg.526]

Although zirconium oxide shows only a limited solubility in the UO2 matrix, fission product zirconium seems to be homogeneously distributed in the fuel, presumably due to an enhancement in Zr02 solubility in the presence of rare earth oxides. That means that, consistent with the results of thermodynamic calculations (see Fig. 3.14.), zirconium is present in the Zr(IV) state. Up to very high linear heat ratings, there is no noticeable zirconium redistribution in the temperature gradient. [Pg.123]

Uranium Purification. Subsequent uranium cycles provide additional separation from residual plutonium and fission products, particularly zirconium— niobium and mthenium (30). This is accompHshed by repeating the extraction/stripping cycle. Decontamination factors greater than 10 at losses of less than 0.1 wt % are routinely attainable. However, mthenium can exist in several valence states simultaneously and can form several nitrosyl—nitrate complexes, some for which are extracted readily by TBP. Under certain conditions, the nitrates of zirconium and niobium form soluble compounds or hydrous coUoids that compHcate the Hquid—Hquid extraction. SiUca-gel adsorption or one of the similar Hquid—soHd techniques may also be used to further purify the product streams. [Pg.206]

The chemical identities of the fission products determine their subsequent redistribution, those elements which are in the gaseous state at the temperature of the operation migrating to the cooler exterior of the fuel rods, and die less voltile elements undergoing incorporation in the fuel rod in solid solution. Thus caesium and iodine migrate to the gas fill which sunounds the fuel rod, and elements such as the rare earths and zirconium are accommodated in solid solution in UO2 without significant migration along the fuel rod radius. Strontium and barium oxidize to form separate islands which can be seen under the microscope. [Pg.249]

Baumgartner and Reichold prepared carrier-free Mo(CO)g in high yield by neutron irradiation of powdered mixtures of UjOg and Cr(CO)g. As with their preparation of ° RuCp2, the Cr(CO)g acted only as a catcher for fission-product molybdenum (and for its precursors niobium and zirconium). The yield of 60% found for Mo(CO)6 is higher than the fractional chain yield of Mo in fission, so that the reaction must be partly thermal, starting with molecular fragments which survive j8 decay. [Pg.77]

Uranium stripping Dilute HNO3 solutions at 45-50°C are used to remove uranium from the TBP phase. Traces of the fission products ruthenium and zirconium are eliminated in the second and third cycles of the Purex process. Also, in the second and third cycles, neptunium and the last traces of plutonium are removed from the uranium product. [Pg.522]

Degraded TBP process solvent is typically cleaned by washing with sodium carbonate or sodium hydroxide solutions, or both. Such washes eliminate retained uranium and plutonium as well as HDBP and H2MBP. Part of the low-molecular-weight neutral molecules such as butanol and nitrobutane, entrained in the aqueous phase, and 90-95% of the fission products ruthenium and zirconium are also removed by the alkaline washes. Alkaline washing is not sufficient, however, to completely restore the interfacial properties of the TBP solvent, because some surfactants still remain in the organic phase. [Pg.523]

A decrease in the number of uranium and plutonium purification cycles from three to two, or even one, would be highly advantageous. First-cycle decontamination factors of uranium from neptunium and from the fission products ruthenium and zirconium must be significantly improved to realize such a decrease. [Pg.526]

The most efficient matrix for retention of actinides and fission products is the uraninite mineral. However, it has been shown that other matricies such as apatite, clay minerals, zirconium silicates, and oxides (Fe, Mn) may also be important in the retention of fission products and actinides. For example, Pu was stored in apatite (Bros et al. 1996) and chlorite (Bros et al. 1993) in the core of the reactor 10. In the core of the reactors, between uraninite grains, 20-200 (j.m-sized metallic aggregates containing fissiogenic Ru, Rh, and Te associated with As, Pb, and S were found. These aggregates also exist in spent fuels of water-pressured type reactor plants, suggesting their analogy with spent fuels. [Pg.126]

If uniform mixing of the fission product vapors and volatilized materials results, the recondensed particles might be expected to have a constant specific activity of elements having similar boiling points. Note parenthetically that studies of fission-product incorporation into the metal and oxide products of vaporized iron wires (in which iron-metal spheres and iron-oxide irregulars are formed) indicate no simple relationship between specific activity and size. For example, a refractory element like zirconium is found most enriched in particles of intermediate size. This is probably in part caused by a concentration effect—i.e.y in these experiments the zirconium represented a mole fraction of about 10"9. As indicated earlier, the fission products are a minor constituent in the fireball, and a very complex pattern of incorporation can be anticipated, especially if coagulation with melted but unvaporized particles ensues. [Pg.405]

In PWRs, the fuel is U02, enriched typically to 3.3% 235U while for BWRs, the fuel is U02, enriched to 2.6%. (Natural uranium is 0.72% 235U). The fuel elements are clad in Zircaloy, a zirconium alloy that includes tin, iron, chromium, and nickel that prevents fission product release and protects them against corrosion by the coolant. The control rod material in BWRs is B4C, while PWRs have Ag-In-Cd or Hf control materials. [Pg.466]

The ZEALEX Process Researchers from KRI have shown that the zirconium salt of dibutyl phosphoric acid (ZS-HDBP) was soluble in Isopar-L in the presence of 30% TBP. This super PUREX solvent, known as ZEALEX, extracts actinides (Np-Am) together with lanthanides and other fission products, such as Ba, Cs, Fe, Mo, and Sr from nitric acid solutions. The extraction yields depend on both the molar ratio between Zr and HDBP in the 30% TBP/Isopar-L mixture and the concentration of HN03 (232). Trivalent transplutonium and lanthanide elements can be stripped together from the loaded ZEALEX solvent by a complexing solution, mixing ammonium carbonate, (NH4)2C03, and ethylenediamine-N.N.N. N -tetraacetic acid (EDTA). An optimized version of the process should allow the separation of... [Pg.165]

A mixture of well-known extractants, di-(2-ethylhexyl)phosphoric acid (HDEHP) and CMPO, in n-paraffin was used for the study of combined extraction of different actinides (americium, plutonium, and uranium) and lanthanides (cerium and europium) and their separation from fission products (cesium, strontium, ruthenium, and zirconium).54 Combined extraction of MAs and lanthanides was studied together with group separation of MAs from lanthanides by selective stripping with a solution of diethylenetriaminepentaacetic acid (DTPA), formic acid, and hydrazine hydrate. This solution strips only MAs, leaving lanthanides in the organic phase. Subsequently, the lanthanides are stripped using a mixture of DTPA and sodium carbonate. [Pg.365]

A decrease in the decontamination performance of uranium and plutonium for fission products (mainly ruthenium, zirconium, cerium, and niobium)... [Pg.447]

It is convenient to consider reactor accidents alongside weapon explosions so that the release of fission products can be compared, but the mode of dispersion is quite different. The configuration and thermal capacity of power reactors are such that bomb-like explosions are not possible. In the Chernobyl accident, nuclear overheating, a steam explosion and steam/zirconium reactions all contributed to the disruption of the reactor (U.S.S.R. State Committee, 1986), but the longdistance environmental effects were due to the subsequent releases of fission products from the damaged reactor. [Pg.66]

Separation and Purification. In the Purex process discussed here, the uranium, plutonium, and fission products are separated by solvent extraction into three different streams (Fig. 21.20). The plutonium stream goes through anion exchange (discussed later) to reduce traces of ruthenium, and the uranium stream goes through silica gel sorption to reduce traces of zirconium. The fission-product stream, which contains the fission products... [Pg.972]

The use of a zirconium-tungstate ion-exchange column for fast separation of cesium and rubidium activities In fission products Is also very interesting. (52). In this study, the... [Pg.43]

Figure 12. Ionic exchange separation of cesium and rubidium activities in fission product, by zirconium tunstate column (52). [Pg.45]

Nuclear fuel rods consist of uranium oxide pellets contained in zirconium alloy or steel tubes. As the fission process proceeds, uranium is used up and fission products accumulate. A lot of these fission products are good neutron absorbers and reduce the efficiency of the fission process (by absorbing neutrons before they reach uranium atoms) so that the rods are removed for reprocessing before all the content has undergone fission. Fission of a atom produces two lighter atoms of approximate relative atomic masses around 90-100 and 130-140, with the main fission products being the intensely radioactive and short lived I (fi 8 d), °La, Pr, Zr, Ru, and Nb, and longer-lived... [Pg.179]

Fission products that are compatible with the uraninite crystal stmcture—the REE, yttrium, neodymium, and zirconium—were largely retained in the uraninite core, the reactor clays, minor phosphate phases, and uranium and zirconium silicate phases (Gauthier-Lafaye et ai, 1996). Lighter REE—lanthanum, cerium, and praseodymium—were partially lost from the reactor. Einally, molybdenum, technetium, mthe-nium, rhodium, and other metallic elements were retained in the metal/metal oxide inclusions and arsenide/sulfide inclusions in the core, and in the reactor clays (Hidaka et ai, 1993 Jensen and Ewing, 2001). [Pg.4786]

The presence of uranium in a sample exposed to a flux of thermal neutrons can cause errors if the nuclide or nuclides determined are fission products or are isotopic with them. Hudgens and Dabagian (39) determined zirconium in zirconium-hafnium mixtures by separating the Nb , daughter of Zr formed by n,y reaction, after the addition of carrier. Contributions from fission product niobium (Nb ) can be allowed foi by irradiating a further sample, isolating fission product Ba ° and from the fission yield curve making allowance for radioactive niobium derived from any uranium impurity. [Pg.334]

The nuclear fuel pellets are generally filled in thin-walled cladding tubes to hinder leaching by coolant in the reactor core and to prevent release of fission products into the coolant circuit. In light-water reactors, for example, zirconium alloy (zirkaloy) cladding is used. [Pg.614]

The nitric acid solution from the dissolution of the fuel rod contents is filtered [poly(propene) fleece] or centrifuged, to remove suspended solids (zirconium- or molydenum- compounds and ruthenium and palladium alloys). The thus obtained fuel solution contains uranium, plutonium and the radioactive fission products. It is, after its composition is adjusted to the extraction conditions (3 molar in nitric acid and 240 to 300 g/L uranium) subjected to multi-cyclic extraction with tributylphosphate (dissolved in dodecane). Uranium and plutonium pass into the organic phase and are thereby separated from the fission products, which remain in the aqueous phase. [Pg.619]

Gal, I., and A. Ruvarac The separation of plutonium from uranium and fission products on zirconium phosphate columns. J. Chromatogr. [Amsterdam] 13, 549 (1964). [Pg.145]


See other pages where Zirconium fission product is mentioned: [Pg.358]    [Pg.279]    [Pg.358]    [Pg.279]    [Pg.249]    [Pg.318]    [Pg.251]    [Pg.529]    [Pg.194]    [Pg.249]    [Pg.5]    [Pg.6]    [Pg.7]    [Pg.394]    [Pg.467]    [Pg.468]    [Pg.77]    [Pg.90]    [Pg.262]    [Pg.366]    [Pg.146]    [Pg.80]    [Pg.1001]    [Pg.182]   
See also in sourсe #XX -- [ Pg.373 , Pg.525 ]




SEARCH



Fission products

Zirconium decontamination from fission products

Zirconium production

© 2024 chempedia.info