Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine 1,3-migration

Cis-olefins or cis./rjns-dienes can be obtained from alkynes in similar reaction sequences. The alkyne is first hydroborated and then treated with alkaline iodine. If the other substituents on boron are alkyl groups, a cis-olefin is formed (G. Zweifel, 1967). If they are cir-alkenyls, a cis, trans-diene results. The reactions are thought to be iodine-assisted migrations of the cis-alkenyl group followed by (rans-deiodoboronation (G. Zweifel, 1968). Trans, trans-dienes are made from haloalkynes and alkynes. These compounds are added one after the other to thexylborane. The alkenyl(l-haloalkenyl)thexylboranes are converted with sodium methoxide into trans, trans-dienes (E. Negishi, 1973). The thexyl group does not migrate. [Pg.37]

Treatment of the borates with iodine leads to boron- C2 migration of an alkyl group[9]. This reaction has not been widely applied synthetically but it might be more applicable for introduction of branched alkyl groups than direct alkylation of an indol-2-yllithium intermediate. [Pg.96]

The chemical identities of the fission products determine their subsequent redistribution, those elements which are in the gaseous state at the temperature of the operation migrating to the cooler exterior of the fuel rods, and die less voltile elements undergoing incorporation in the fuel rod in solid solution. Thus caesium and iodine migrate to the gas fill which sunounds the fuel rod, and elements such as the rare earths and zirconium are accommodated in solid solution in UO2 without significant migration along the fuel rod radius. Strontium and barium oxidize to form separate islands which can be seen under the microscope. [Pg.249]

Among the halogens, fluorine does not undergo rearrangement, and what evidence there is suggests that the rearrangement of chlorine is an intramolecular process (1,2 shift) whereas that of bromine appears to take place by both inter-and intramolecular routes. Less is known about iodine migration. [Pg.480]

Aryl halides can be dehalogenated by Friedel-Crafts catalysts. Iodine is the most easily cleaved. Dechlorination is seldom performed and defluorination apparently never. The reaction is most successful when a reducing agent, say, Br or 1 is present to combine with the I" or Br coming off." Except for deiodination, the reaction is seldom used for preparative purposes. Migration of halogen is also found," both intramolecular and intermolecular." The mechanism is probably the reverse of that of 11-11." ... [Pg.735]

Treatment of alkenyldialkylboranes with iodine results in the formation of the Z-alkene with migration of one boron substituent.26... [Pg.795]

Both alkynes and alkenes can be obtained from adducts of terminal alkynes and boranes. Reaction with iodine induces migration and results in the formation of the alkylated alkyne.32... [Pg.796]

The mechanism involves electrophilic attack by iodine at the triple bond, which induces migration of an alkyl group from boron. This is followed by elimination of dialkyliodoboron. [Pg.796]

The use of TMOF as a solvent provides strong acetalizing conditions (323 330). This allows the generation of enol ether 331, which on electrophilic attack of hypervalent iodine species [PhI(OMe)2] (83IC1563) gives intermediate 332. Nucleophilic attack of the solvent at the C(4)-position of 332, followed by migration of ring A, results in the formation of 326. The minor product 327 is resulted by a Sn2 attack of methanol at the C(3)-position of 333 (Scheme 85). [Pg.70]

The reactors at Oklo and Bangombe provide great confidence in the feasibility of radioactive waste isolation. The reactors operated for 800 000 years and after two billion years, most of the radionuclides (except for iodine that has migrated away completely) and/or their decay products have migrated only a few metres. [Pg.84]

In spite of its formal similarity to the above mentioned annulation processes, the reaction shown in 4.37. includes a unique migration step. Oxidative insertion of the palladium into the phenyl-iodine bond is followed by the migration of the palladium onto the more electron rich indole ring. The 2-indolylpalladium complex than carbopalladates the pendant alkync moiety and the process ends by the formal activation of a C-H bond of the phenyl substituent and subsequent reductive elimination, furnishing the pentacyclic product.48 The same strategy has been utilised in the preparation of the indoloindolone framework from /V-bcnzoyl-3-(o-iodophcnyl)-indolc in an oxidative addition - palladium migration - C-H activation sequence.49... [Pg.81]

There have been several studies of the iodine-atom recombination reaction which have used numerical techniques, normally based on the Langevin equation. Bunker and Jacobson [534] made a Monte Carlo trajectory study to two iodine atoms in a cubical box of dimension 1.6 nm containing 26 carbon tetrachloride molecules (approximated as spheres). The iodine atom and carbon tetrachloride molecules interact with a Lennard—Jones potential and the iodine atoms can recombine on a Morse potential energy surface. The trajectives were followed for several picoseconds. When the atoms were formed about 0.5—0.7 nm apart initially, they took only a few picoseconds to migrate together and react. They noted that the motion of both iodine atoms never had time to develop a characteristic diffusive form before reaction occurred. The dominance of the cage effect over such short times was considerable. [Pg.336]


See other pages where Iodine 1,3-migration is mentioned: [Pg.316]    [Pg.666]    [Pg.42]    [Pg.93]    [Pg.480]    [Pg.1424]    [Pg.861]    [Pg.151]    [Pg.110]    [Pg.425]    [Pg.103]    [Pg.585]    [Pg.289]    [Pg.202]    [Pg.70]    [Pg.634]    [Pg.163]    [Pg.431]    [Pg.552]    [Pg.71]    [Pg.268]    [Pg.138]    [Pg.194]    [Pg.115]    [Pg.566]    [Pg.132]    [Pg.146]    [Pg.335]    [Pg.107]    [Pg.113]    [Pg.407]    [Pg.177]    [Pg.361]   
See also in sourсe #XX -- [ Pg.99 , Pg.557 ]




SEARCH



© 2024 chempedia.info