Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Factors affecting concentration

A moderate amount of information is available concerning the factors affecting concentrations of phenolics in plants, and a little research has been completed concerning factors affecting concentrations of alkaloids and terpenoids. Little information is available concerning factors affecting concentrations of other types of allelopathic compounds thus, research is urgently needed in this area. [Pg.18]

In natural waters, hydrolysis is the primary factor affecting concentration. The tendency to hydrolyze follows the relative effective charge of the ions. This is known to be... [Pg.458]

Hinkle, M.E., 1990. Factors affecting concentrations of helium and carbon dioxide in soil gases. In Geochemistry of Gaseous Elements and Compounds. Theophrastus Publ., pp. 421 -448. [Pg.486]

Formation, factors affecting concentrations, legal limits and occurrence of polycyclic aromatic hydrocarbons in smoked meat products and smoke flavor additives are briefly reviewed by Simko. The most widely employed techniques such as thin-layer chromatography (TLC), gas chromatography (GC), and high-performance liquid chromatography (HPLC) are evaluated. Moreover, sample preparation, pre-separation procedures, separation and detection systems being used for the determination have been evaluated with emphasis on the latest developments in applied food analysis and... [Pg.427]

Precision When the analyte s concentration is well above the detection limit, the relative standard deviation for fluorescence is usually 0.5-2%. The limiting instrumental factor affecting precision is the stability of the excitation source. The precision for phosphorescence is often limited by reproducibility in preparing samples for analysis, with relative standard deviations of 5-10% being common. [Pg.432]

Precision For samples and standards in which the concentration of analyte exceeds the detection limit by at least a factor of 50, the relative standard deviation for both flame and plasma emission is about 1-5%. Perhaps the most important factor affecting precision is the stability of the flame s or plasma s temperature. For example, in a 2500 K flame a temperature fluctuation of +2.5 K gives a relative standard deviation of 1% in emission intensity. Significant improvements in precision may be realized when using internal standards. [Pg.440]

Several factors affect the bandshapes observed ia drifts of bulk materials, and hence the magnitude of the diffuse reflectance response. Particle size is extremely important, siace as particle size decreases, spectral bandwidths generally decrease. Therefore, it is desirable to uniformly grind the samples to particle sizes of <50 fim. Sample homogeneity is also important as is the need for dilute concentrations ia the aoaabsorbiag matrix. [Pg.286]

Odors are characterized by quaUty and intensity. Descriptive quaUties such as sour, sweet, pungent, fishy, and spicy are commonly used. Intensity is deterrnined by how much the concentration of the odoriferous substance exceeds its detection threshold (the concentration at which most people can detect an odor). Odor intensity is approximately proportional to the logarithm of the concentration. However, several factors affect the abiUty of an individual to detect an odor the sensitivity of a subject s olfactory system, the presence of other masking odors, and olfactory fatigue (ie, reduced olfactory sensitivity during continued exposure to the odorous substance). In addition, the average person s sensitivity to odor decreases with age. [Pg.376]

Adsorption Kinetics. In zeoHte adsorption processes the adsorbates migrate into the zeoHte crystals. First, transport must occur between crystals contained in a compact or peUet, and second, diffusion must occur within the crystals. Diffusion coefficients are measured by various methods, including the measurement of adsorption rates and the deterniination of jump times as derived from nmr results. Factors affecting kinetics and diffusion include channel geometry and dimensions molecular size, shape, and polarity zeoHte cation distribution and charge temperature adsorbate concentration impurity molecules and crystal-surface defects. [Pg.449]

Factors affecting RO membrane separations and water flux include feed variables such as solute concentration, temperature, pH, and pretreatment requirements membrane variables such as polymer type, module geometry, and module arrangement and process variables such as feed flow rate, operating time and pressure, and water recovery. [Pg.148]

Other Factors Affecting the Viscosity of Dispersions. Factors other than concentration affect the viscosity of dispersions. A dispersion of nonspherical particles tends to be more viscous than predicted if the Brownian motion is great enough to maintain a random orientation of the particles. However, at low temperatures or high solvent viscosities, the Brownian motion is small and the particle alignment in flow (streamlining) results in unexpectedly lower viscosities. This is a form of shear thinning. [Pg.174]

The characteristics of WC, especially grain size, are determined by purity, particle shape and grain size of the starting material, and the conditions employed for reduction and carburization. The course of the reaction WO3 — W — WC is dependent on temperature, gas flow rates, water-vapor concentration in the gas, and the depth of the powder bed. All these factors affect the coarsening of the grain. [Pg.449]

Discrimination between exposed and unexposed areas in this process requires the selection of thia zolidine compounds that do not readily undergo alkaline hydrolysis in the absence of silver ions. In a study of model compounds, the rates of hydrolysis of model /V-methyl thia zolidine and A/-octadecyl thiazolidine compounds were compared (47). An alkaline hydrolysis half-life of 33 min was reported for the /V-methyl compound, a half-life of 5525 min (3.8 days) was reported for the corresponding V/-octadecyl compound. Other factors affecting the kinetics include the particular silver ligand chosen and its concentration (48). Polaroid Spectra film introduced silver-assisted thiazolidine cleavage to produce the yellow dye image (49), a system subsequentiy used in 600 Plus and Polacolor Pro 100 films. [Pg.494]

The most important factors affecting performance are operating temperature, surface velocity, contaminant concentration and composition, catalyst properties, and the presence or absence of poisons or inhibitors. [Pg.514]

RMC can be selectively extracted into butyl acetate. Concentration coefficient 50 was achieved. Factors affecting accuracy and reproducibility of the proposed method were investigated. Method is simple and fast. Detection limit is 0,3 p.g/1 for P(V). [Pg.156]

Sodium dodecylsulphate was selected as an anionic surfactant Factors affecting acid-induced cloud point extraction including surfactant, hydrochloric acid, PAHs, and electrolyte concentration, centrifugation have been examined. Finally, we applied the optimized acid-induced CPE system for combination of the extraction and preconcentration steps with fluorimetric determination of some representatives of PAHs. Suggested means was used for PAHs determination in tap water. [Pg.422]

Adsorption — An important physico-chemical phenomenon used in treatment of hazardous wastes or in predicting the behavior of hazardous materials in natural systems is adsorption. Adsorption is the concentration or accumulation of substances at a surface or interface between media. Hazardous materials are often removed from water or air by adsorption onto activated carbon. Adsorption of organic hazardous materials onto soils or sediments is an important factor affecting their mobility in the environment. Adsorption may be predicted by use of a number of equations most commonly relating the concentration of a chemical at the surface or interface to the concentration in air or in solution, at equilibrium. These equations may be solved graphically using laboratory data to plot "isotherms." The most common application of adsorption is for the removal of organic compounds from water by activated carbon. [Pg.163]

TI8. Schlesinger, R. B. (1989). Factors affecting the response of lung clearance systems to acid aerosols role of exposure concentration. E.nviron. Health Perspect. 79, 121-126. [Pg.233]

Temperature is the most important of the factors affecting pickle activity. In general, an increase of 10°C causes an increase in pickling speed of about 70 Vo. Agitation of the pickle increases the speed since it assists the removal of the insoluble scale and rapidly renews the acid at the scale surface. Increase in acid concentration up to about 40 Vo w/w in ferrous sulphate-free solutions, and up to lower concentrations in solutions containing ferrous sulphate, increases the activity. Increase in the ferrous sulphate content at low acid concentrations reduces the activity, but at 90-95 C and at acid concentrations of about 30 Vo w/w it has no effect. [Pg.292]

Henceforth we shall concentrate our attention on one reaction at a time. The nature of the reactants will be held constant while the other factors that affect rates are considered. The first of these factors is concentration. [Pg.126]

The transfection mechanism of plasmid-chitosan complexes as well as the relationship between transfection activity and cell uptake was analyzed by using fluorescein isothiocyanate-labeled plasmid and Texas-Red-labeled chitosan. Several factors affect transfection activity and cell uptake, for example the molecular mass of chitosan, stoichiometry of complex, seriun concentration and the pH of the transfection medium. The level of transfection with plasmid-chitosan complexes was found to be highest when the molecular mass of chitosan was 40 or 84 kDa, the ratio of chitosan nitrogen to DNA phosphate was 5, and serum at pH 7.0 was 10%. Plasmid-chitosan complexes most likely condense to form large aggregates (5-8 p,m), which absorb to the cell surface. After this, plasmid-chitosan complexes are endocytosed, and accumulate in the nucleus [97]. [Pg.160]

The following factors affect net diffusion of a substance (1) Its concentration gradient across the membrane. Solutes move from high to low concentration. (2) The electrical potential across the membrane. Solutes move toward the solution that has the opposite charge. The inside of the cell usually has a negative charge. (3) The permeability coefficient of the substance for the membrane. (4) The hydrostatic pressure gradient across the membrane. Increased pressure will increase the rate and force of the collision between the molecules and the membrane. (5) Temperature. Increased temperature will increase particle motion and thus increase the frequency of collisions between external particles and the membrane. In addition, a multitude of channels exist in membranes that route the entry of ions into cells. [Pg.423]


See other pages where Factors affecting concentration is mentioned: [Pg.39]    [Pg.202]    [Pg.195]    [Pg.122]    [Pg.193]    [Pg.162]    [Pg.165]    [Pg.402]    [Pg.138]    [Pg.2214]    [Pg.120]    [Pg.76]    [Pg.60]    [Pg.249]    [Pg.97]    [Pg.127]    [Pg.268]    [Pg.160]    [Pg.58]    [Pg.89]    [Pg.16]    [Pg.626]    [Pg.281]    [Pg.179]    [Pg.111]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Chemicals factors affecting concentrations

Concentration factor

Concentration factors affecting method selection

Concentration permeability reduction factor affected

Concentration polarization factors affecting

Critical micelle concentration factors affecting

Factors Affecting Fish Concentrations of PCBs

Factors affecting reaction rate reactant concentration

Factors affecting the critical micelle concentration and micellar size

© 2024 chempedia.info