Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental techniques optical properties

Experimental techniques based on the application of mechanical forces to single molecules in small assemblies have been applied to study the binding properties of biomolecules and their response to external mechanical manipulations. Among such techniques are atomic force microscopy (AFM), optical tweezers, biomembrane force probe, and surface force apparatus experiments (Binning et al., 1986 Block and Svoboda, 1994 Evans et ah, 1995 Israelachvili, 1992). These techniques have inspired us and others (see also the chapters by Eichinger et al. and by Hermans et al. in this volume) to adopt a similar approach for the study of biomolecules by means of computer simulations. [Pg.40]

Several experimental techniques may be used, such as acid/base titration, electrical conductivity measurement, temperature measurement, or measurement of optical properties such as refractive index, light absorption, and so on. In each case, it is necessary to specify the manner of tracer addition, the position and number of recording stations, the sample volume of the detection system, and the criteria used in locating the end-point. Each of these factors will influence the measured value of mixing time, and therefore care must be exercised in comparing results from different investigations. [Pg.299]

F. Schotte, S. Techert, P. Anhnrud, V. Srajer, K. Moffat, and M. Wulff, Picosecond structural studies using pulsed synchrotron radiation. In D. M. Mills (ed.), Third-Generation Hard X-Ray Synchrotron Radiation Sources Source Properties, Optics, and Experimental Techniques, Chap. 10, p. 345-402. John Wiley Sons, Hobokon, NJ, 2002. [Pg.283]

The term nonlinear optical property refers to an optical property, which can be modified by exposing the material to intense light irradiation. In this section, we focus on the cascaded first- (/ 1 ) and third-order ( / ) susceptibilities describing nonlinear absorption (ESA and 2PA) and nonlinear refraction (n2) processes. Z-scan, pump-probe, and two-photon upconverted fluorescence techniques are among the most used experimental methods for determining optical nonlinearities. [Pg.119]

Mills, D. M., ed. (2002). Third-Generation Hard X-ray Synchrotron Radiation Sources Source Properties, Optics, and Experimental Techniques. John Wiley and Sons, New York. [Pg.188]

The purpose of this article is to review studies carried out on hemes incorporated inside the micellar cavity, and examine the effect of micellar interaction on the electronic and structural properties of the heme. A comparison of these results with those on the metalloproteins is clearly in order to assess their suitability as models. The article begins with a general introduction to micellar properties, the incorporation of hemes in the micellar cavity, and then discusses results on hemes inside the micelles with different oxidation and spin states, and stereochemistry. The experimental techniques used in the studies on these aqueous detergent micelles are mostly NMR and optical spectroscopy. The present article has therefore a strong emphasis on NMR spectroscopy, since this technique has been used very extensively and purposefully for studies on hemes inside micellar cavities. [Pg.117]

Further analysis is based on the idea that the characteristic experimental behavior of different classes of compounds and the suitability of those or other models used to describe this behavior is ultimately related to the extent to which the chromophores or electron groups physically present in the molecular system are reflected in these models. It is easy to notice, that the MM methods work well in case of molecules with local bonds designated in Table 1 as valence bonds the QC methods apply both to the valence bonded systems, and for the systems with delocalized bonds (referred as orbital bonds in Table 1). The TMCs of interest, however, not covered either by MM or by standard QC techniques can be physically characterized as those bearing the d-shell chromophore. The magnetic and optical properties characteristic for TMCs are related to d- or /-states of metal ions. The basic features in the electronic structure of TMCs of interest, distinguishing these compounds from others are the following ... [Pg.477]

This review covers the theoretical background and some of the practical aspects of nonlinear optics, including a description of the origins of third-order nonlinearities, systems of units that are encountered, experimental techniques that have been used or may be used to probe the third-order NLO properties of organometallic complexes, and computational methods that have or could be used to calculate third-order NLO properties. Subsequent sections collect comprehensive data of organometallic complexes in tables categorized by complex type and discussions of the results of third-order NLO measurements and calculations performed on organometallic... [Pg.351]

Electrolyte Electroreflectance (EER) is a sensitive optical technique in which an applied electric field at the surface of a semiconductor modulates the reflectivity, and the detected signals are analyzed using a lock-in amplifier. EER is a powerful method for studying the optical properties of semiconductors, and considerable experimental detail is available in the literature. ( H, J 2, H, 14 JL5) The EER spectrum is automatically normalized with respect to field-independent optical properties of surface films (for example, sulfides), electrolytes, and other experimental particulars. Significantly, the EER spectrum may contain features which are sensitive to both the AC and the DC applied electric fields, and can be used to monitor in situ the potential distribution at the liquid junction interface. (14, 15, 16, 17, 18)... [Pg.272]

See Kajzar, F. Messier, J. In Nonlinear Optical Properties of Organic Molecules and Crystals. Chemla, D. S., Zyss, J., Eds. Academic Press, Inc. New York, 1987, Vol. 2, Chap. III-2 for an excellent description of the experimental details of the Maker fringe technique. [Pg.655]

Spectroscopic methods are very useful for determining molecular properties. Time-resolved spectroscopic methods are useful for monitoring the evolution of the molecular properties in real time. Moreover, time-resolved spectroscopic techniques have the best time resolution available among all kinds of time-resolved experimental techniques. Thus, very often time-resolved spectroscopic methods reveal the dynamics of a molecular system in the non-equilibrium regime. In this section, the density matrix method is applied to calculate the spectroscopic properties of molecular systems. These include the linear and non-linear optical processes, in equilibrium or non-equilibrium cases. The approach is based on the susceptibility theory. [Pg.147]


See other pages where Experimental techniques optical properties is mentioned: [Pg.225]    [Pg.56]    [Pg.88]    [Pg.119]    [Pg.173]    [Pg.648]    [Pg.22]    [Pg.43]    [Pg.108]    [Pg.116]    [Pg.149]    [Pg.150]    [Pg.544]    [Pg.33]    [Pg.361]    [Pg.410]    [Pg.77]    [Pg.120]    [Pg.126]    [Pg.101]    [Pg.225]    [Pg.298]    [Pg.230]    [Pg.108]    [Pg.8]    [Pg.42]    [Pg.534]    [Pg.249]    [Pg.178]    [Pg.55]    [Pg.670]    [Pg.30]    [Pg.57]    [Pg.32]    [Pg.703]    [Pg.4]    [Pg.18]    [Pg.125]    [Pg.227]   
See also in sourсe #XX -- [ Pg.127 , Pg.166 ]




SEARCH



Experimental optical properties

Optical techniques

© 2024 chempedia.info