Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene oxide ethoxylates from

The product secondary alcohols from paraffin oxidation are converted to ethylene oxide adducts (alcohol ethoxylates) which are marketed by Japan Catalytic Chemical and BP Chemicals as SOFTANOL secondary alcohol ethoxylates. Union Carbide Chemical markets ethoxylated derivatives of the materials ia the United States under the TERGlTOL trademark (23). [Pg.460]

Another subclass of substituted amides that is of great commercial value is the ethoxylated amides. They can be synthesized from alkanolamides by chain extending with ethylene or propylene oxide or by ethoxylation directly from the primary amide (46—48). It was originally beheved that the stepwise addition of ethylene oxide (EO) would produce the monoethano1 amide and then the diethanolamide when sufficient ethylene oxide was added (49), but it has been discovered that only one hydrogen of the amide is substituted with ethylene oxide (50—53). As is typical of most ethylene oxide adducts, a wide distribution of polyethylene oxide chain length is seen as more EO is added. A catalyst is necessary to add ethylene oxide or propylene oxide to a primary or an ethoxylated amide or to ethoxylate a diethoxy alkanolamide synthesized from diethanolamine (54). [Pg.184]

Ethylene oxide adds to the bis(2-hydtoxyethyl) teitiaiy amine in a random fashion where x y y = n y2. Ethoxylated amines, varying from strongly cationic to very weakly cationic in character, are available containing up to 50 mol of ethylene oxide/mol of amine. Ethyoxylated fatty amine quaternaries, cationic surfactants (both chloride from methyl chloride and acetate from acetic acid), ate also available. [Pg.219]

Fats, Oils, or Fatty Acids. The primary products produced direcdy from fats, oils, or fatty acids without a nitrile iatermediate are the quatemized amidoamines, imidazolines, and ethoxylated derivatives (Fig. 3). Reaction of fatty acids or tallow with various polyamines produces the iatermediate dialkylarnidoarnine. By controlling reaction conditions, dehydration can be continued until the imidazoline is produced. Quaternaries are produced from both amidoamines and imidazolines by reaction with methyl chloride or dimethyl sulfate. The amidoamines can also react with ethylene oxide (qv) to produce ethoxylated amidoamines which are then quaternized. [Pg.381]

Linear ethoxylates are the preferred raw materials for production of ether sulfates used in detergent formulations because of uniformity, high purity, and biodegradabihty. The alkyl chain is usually in the to range having a molar ethylene oxide alcohol ratio of anywhere from 1 1 to 7 1. [Pg.83]

The physical properties of the fatty acid ethoxylates depend on the nature of the fatty acid and even more on ethylene oxide content. As the latter increases, consistencies of the products change from free-flowing Hquids to slurries to firm waxes (qv). At the same time, odor, which is characteristic of the fatty acid, decreases in intensity. Odor and color stabiUty are important commercial properties, particularly in textile appHcations. Oleic acid esters, though possessing good functional properties, cannot be used because they tend to yellow on exposure to heat and air. [Pg.250]

Ethoxylation of alkyl amine ethoxylates is an economical route to obtain the variety of properties required by numerous and sometimes smaH-volume industrial uses of cationic surfactants. Commercial amine ethoxylates shown in Tables 27 and 28 are derived from linear alkyl amines, ahphatic /-alkyl amines, and rosin (dehydroabietyl) amines. Despite the variety of chemical stmctures, the amine ethoxylates tend to have similar properties. In general, they are yellow or amber Hquids or yellowish low melting soHds. Specific gravity at room temperature ranges from 0.9 to 1.15, and they are soluble in acidic media. Higher ethoxylation promotes solubiUty in neutral and alkaline media. The lower ethoxylates form insoluble salts with fatty acids and other anionic surfactants. Salts of higher ethoxylates are soluble, however. Oil solubiUty decreases with increasing ethylene oxide content but many ethoxylates with a fairly even hydrophilic—hydrophobic balance show appreciable oil solubiUty and are used as solutes in the oil phase. [Pg.256]

Recently, patented ethoxylation catalysts have become available that can significantly narrow the ethylene oxide distribution of the alcohol ethoxylates used to obtain alcohol ether sulfates. These products are termed peaked alcohol ether sulfates whereas all others are termed conventional alcohol ether sulfates. Peaked alcohol ether sulfate solutions thicken more than those with a conventional ethylene oxide distribution [78]. Peaked alcohol ether sulfate solutions also exhibit behaviors different from those of conventional sulfates [79]. Smith [78] studied the viscosities of 15% sodium dodecyl ether sulfate solutions of both families with NaCl content between 2% and 10% at 25°C using a Brookfield model DVII viscometer at a shear rate of 2 s 1. The results are shown in Fig. 5 where the very different viscosities achieved are clearly observed. [Pg.241]

A lauryl alcohol ethoxylate therefore will not only contain ethoxylated alcohol with a degree of ethoxylation from 1 to 10 mol of ethylene oxide according to a Poisson contribution but due to currently typical production methods also significant amounts of unreacted fatty alcohol. [Pg.513]

Dioxane forms by the chemical cleavage of two molecules of ethylene oxide from the parent ethoxylated alcohol. Dioxane is the undesirable byproduct. The amount of dioxane ranges from traces to hundreds, even thousands, of ppm (mg/kg) depending on raw material quality and sulfonation/neutralization process conditions. [Pg.661]

FIGURE 18.2 Capillary gel electrophoresis separation of an octylphenol ethoxylate sulfate (with an ethylene oxide chain length from 1 to 8). Run conditions pH 8.3 (100 mM tris-borate, 7 M urea) 50 pm x 75 cm J W polyacrylamide gel capillary (PAGE-5, 5%T, and 5%C) run at 20 kV with a 5kV injection for 5 s UV detection at 260nm. [Pg.430]

The quantification of short-chain metabolites from nonylphenol ethoxy-lates (NPEOs) has been carried out in different ways because of the lack of individual standards. Thus, several authors have employed commercial mixtures with low ethoxylation degree and assuming similar molar response factors, such as Marlophen 83 with an average of 3.5 mol of ethylene oxide (EO) [1-5], Imbentin-N/7A, a mixture of NPEOi and NPEO2 (75 25) [6-11] or a mixture of miscellaneous origin [12,13], to quantify NPEOi and NPEO2. [Pg.476]

Nonionic surfactants contain (Fig. 23) no ionic functionalities, as their name implies, and include ethylene oxide adducts (EOA) of alkylphenols and fatty alcohols. Production of detergent chain-length fatty alcohols from both natural and petrochemical precursors has now increased with the usage of alkylphenol ethoxylates (APEO) for some applications. This is environmentally less acceptable because of the slower rate of biodegradation and concern regarding the toxicity of phenolic residues [342]. [Pg.51]

M. For nonionic surfactant, we used Newcol 1102, 1103 and 1105. These surfactants contain dodecanol ethoxylate. The last digit in the Newcol number represents the ethylene oxide (EO) number. The CMC values for pure dodecanol ethoxylate ( ) with EO number from 3 to 5 are in the concentration range of 0.001-0.003%. C value in... [Pg.92]

A C1215 essentially linear primary alcohol ethoxylate having an average of 9 ethylene oxide (EO) units per mole of alcohol (C12.15LPAE-9). The alcohol was prepared from Ci i.u olefins using catalytic addition of CO and H2. Approximately 80% of this alcohol contained linear alkyl chains. The 20% remaining contained 2-alkyl branches, mostly methyl. [Pg.102]

Manufacturing processes and equipment are similar to those employed for alcohol ethoxylate preparation. In the absence of steric hindrance, ethylene oxide reacts with both hydrogens of primary amines at relatively low temperatures (90—120°C) without added catalysts (105). When the nitrogen atom is hindered, as it is in the Triton RW products, only one of the amino hydrogens reacts with ethylene oxide. Once this reaction is complete, a basic catalyst is added and ethoxylation proceeds in the manner of the alcohol-based nonionics. In IV-alkyl-l,3-propanediamine, all three amino hydrogens are available for reaction with ethylene oxide. N-Alkyl-1,3-propanediamines are prepared from fatty monoamines and acrylonitrile, followed by reduction of the resulting 3-cyanoethylalkyl amine. [Pg.257]


See other pages where Ethylene oxide ethoxylates from is mentioned: [Pg.449]    [Pg.67]    [Pg.83]    [Pg.233]    [Pg.243]    [Pg.243]    [Pg.245]    [Pg.247]    [Pg.247]    [Pg.254]    [Pg.257]    [Pg.460]    [Pg.320]    [Pg.610]    [Pg.452]    [Pg.317]    [Pg.482]    [Pg.644]    [Pg.269]    [Pg.118]    [Pg.95]    [Pg.33]    [Pg.40]    [Pg.83]    [Pg.233]    [Pg.243]    [Pg.243]    [Pg.245]    [Pg.247]    [Pg.247]    [Pg.254]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Ethoxylated

Ethoxylates

Ethoxylation

Ethylene from oxidation

Ethylene oxide, from

© 2024 chempedia.info