Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene glycol preparation

How can you make a polyester and a polyamide Objectives Prepare a polyester from phthalic anhydride and ethylene glycol. Prepare a polyamide from adipoyl chloride and hexamethylenediamine. phthalic anhydride (2.0 g) sodium acetate (0.1 g) ethylene glycol (1 mL) 5% adipoyl chloride in cyclohexane (25 mL) 50% aqueous ethanol (10 mL) 5% aqueous solution of hexamethylenediamine (25 mL) 20% sodium hydroxide (NaOH) (1 mL) scissors copper wire test tube test-tube rack 10-mL graduated cylinder 50-mL graduated cylinder 150-mL beakers (2) ring stand clamp Bunsen burner striker or matches balance weighing papers (2)... [Pg.182]

Lin, Y.-S. Hlady, V. Golander, C.-G., The surface density gradient of grafted poly(ethylene glycol) preparation, characterization and protein adsorption, Colloids Surf. B Biointerfaces 1994, 3, 49-62... [Pg.77]

The results (Table 2) show that catalytic reactivity is weakly influenced by ageing test despite the decrease of surface areas, the stabilization of which is reached after the third run. (Ethylene-glycol preparation gives the higliest specific area and activity.)... [Pg.567]

Stevels W M, Bernard A, Van De Witte P, Dijkstra P J, Feijen J (1996), Block copol5Tners of poly(lactide) and poly(s-caprolactone) or poly(ethylene glycol) prepared by reactive extrusion , J. Appl. Polym. Sci., 62, 1295-1301. [Pg.106]

CH3 CH0H CH20H, a colourless, almost odourless liquid. It has a sweet taste, but is more acrid than ethylene glycol b.p. 187. Manufactured by heating propylene chlorohydrin with a solution of NaHCO under pressure. It closely resembles dihydroxyethane in its properties, but is less toxic. Forms mono-and di-esters and ethers. Used as an anti-freeze and in the preparation of perfumes and flavouring extracts, as a solvent and in... [Pg.139]

Colourless liquid b.p, 28" C. Prepared from (C1CH2CH2)20 with fused KOH in a NHj atmosphere or in ethylene glycol at over 200 C. Readily oxidized by air. slowly polymerizes to a jelly. [Pg.145]

C12H4CI4O2. A by-product in the preparation of 2,4,5-trichlorophenol from 1,2,4,5-tetrachlorobenzene, sodium hydroxide and ethylene glycol. Causes chloracne in humans. [Pg.389]

Alkyl fluorides may be prepared in moderate yield by interaction of an alkyl bromide with anhydrous potassium fluoride in the presence of dry ethylene glycol as a solvent for the inorganic fluoride, for example ... [Pg.272]

The monoalkyl ethers with R = CHj, CjHj and C4H, , known respectively as methyl ceUoaolve, ceUosolve and hutyl cellosolve, are of great commercial value, particularly as solvents, since they combine the properties of alcohols and ethers and are miscible with water. Equally important compounds are the carbitols (monoalkyl ethers of diethyleneglycol) prepared by the action of ethylene oxide upon the monoethers of ethylene glycol ... [Pg.444]

ETHYLENE We discussed ethylene production in an earlier boxed essay (Section 5 1) where it was pointed out that the output of the U S petrochemi cal industry exceeds 5 x 10 ° Ib/year Approximately 90% of this material is used for the preparation of four compounds (polyethylene ethylene oxide vinyl chloride and styrene) with polymerization to poly ethylene accounting for half the total Both vinyl chloride and styrene are polymerized to give poly(vinyl chloride) and polystyrene respectively (see Table 6 5) Ethylene oxide is a starting material for the preparation of ethylene glycol for use as an an tifreeze in automobile radiators and in the produc tion of polyester fibers (see the boxed essay Condensation Polymers Polyamides and Polyesters in Chapter 20)... [Pg.269]

Ethylene glycol and propy lene glycol are prepared industrially from the corre spending alkenes by way of their epoxides Someapplica tions were given in the box in Section 6 21... [Pg.634]

Poly(ethylene Terephthalate). Poly(ethylene terephthalate) is prepared by the reaction of either terephthalic acid or dimethyl terephthalate with ethylene glycol, and its repeating unit has the general structure. [Pg.1019]

Ester interchange reactions are valuable, since, say, methyl esters of di-carboxylic acids are often more soluble and easier to purify than the diacid itself. The methanol by-product is easily removed by evaporation. Poly (ethylene terephthalate) is an example of a polymer prepared by double application of reaction 4 in Table 5.3. The first stage of the reaction is conducted at temperatures below 200°C and involves the interchange of dimethyl terephthalate with ethylene glycol... [Pg.300]

Difluoropyridines. 2,4-Difluoropyridine can be prepared (26% yield) from 2,4-dichloropyridine and potassium fluoride in sulfolane and ethylene glycol initiator (403). The 4-fluorine is preferentially replaced by oxygen nucleophiles to give 2-fluoro-4-hydroxypyridine derivatives for herbicidal apphcations (404). [Pg.336]

Unsaturated polyester resins prepared by condensation polymerization constitute the largest industrial use for maleic anhydride. Typically, maleic anhydride is esterified with ethylene glycol [107-21-1] and a vinyl monomer or styrene is added along with an initiator such as a peroxide to produce a three-dimensional macromolecule with rigidity, insolubiUty, and mechanical strength. [Pg.453]

Ethylene Glycol Process. Oxahc acid is also prepared by the nitric acid oxidation of ethylene glycol (15—21), and the process is basically the same as in the case of carbohydrates except for the absence of the hydrolyzer (see Eig. 1). In this process, ethylene glycol is oxidized in a mixture of... [Pg.457]

The addition product, C QHgNa, called naphthalenesodium or sodium naphthalene complex, may be regarded as a resonance hybrid. The ether is more than just a solvent that promotes the reaction. StabiUty of the complex depends on the presence of the ether, and sodium can be Hberated by evaporating the ether or by dilution using an indifferent solvent, such as ethyl ether. A number of ether-type solvents are effective in complex preparation, such as methyl ethyl ether, ethylene glycol dimethyl ether, dioxane, and THF. Trimethyl amine also promotes complex formation. This reaction proceeds with all alkah metals. Other aromatic compounds, eg, diphenyl, anthracene, and phenanthrene, also form sodium complexes (16,20). [Pg.163]

Eatty acid ethoxylates are used extensively in the textile industry as emulsifiers for processing oils, antistatic agents (qv), softeners, and fiber lubricants, and as detergents in scouring operations. They also find appHcation as emulsifiers in cosmetic preparations and pesticide formulations. Eatty acid ethoxylates are manufactured either by alkaH-catalyzed reaction of fatty acids with ethylene oxide or by acid-catalyzed esterification of fatty acids with preformed poly(ethylene glycol). Deodorization steps are commonly incorporated into the manufacturing process. [Pg.250]

Titanium tetraiodide can be prepared by direct combination of the elements at 150—200°C it can be made by reaction of gaseous hydrogen iodide with a solution of titanium tetrachloride in a suitable solvent and it can be purified by vacuum sublimation at 200°C. In the van Arkel method for the preparation of pure titanium metal, the sublimed tetraiodide is decomposed on a tungsten or titanium filament held at ca 1300°C (152). There are frequent hterature references to its use as a catalyst, eg, for the production of ethylene glycol from acetylene (153). [Pg.132]

MetlylEsters. The addition product of two moles of TYZOR TPT and one mole of ethylene glycol, GLY—TI, can be used as a transesterification catalyst for the preparation of methyl esters. The low solubility of tetramethyl titanate has prevented the use of them as a catalyst for methyl ester preparation (488). [Pg.162]

Amino Alcohols. Reaction of chloroformate is much more rapid at the amino group than at the hydroxyl group (4—8). Thus the hydroxy carbamates, which can be cyclized with base to yield 2-oxazoHdones, can be selectively prepared (29). Nonionic detergents may be prepared from poly[(ethylene glycol) bis(chloroformates)] and long-chain tertiary amino alcohols (30). [Pg.39]

Third Monomers. In order to achieve certain property improvements, nitrile mbber producers add a third monomer to the emulsion polymerization process. When methacrylic acid is added to the polymer stmcture, a carboxylated nitrile mbber with greatly enhanced abrasion properties is achieved (9). Carboxylated nitrile mbber carries the ASTM designation of XNBR. Cross-linking monomers, eg, divinylbenzene or ethylene glycol dimethacrylate, produce precross-linked mbbers with low nerve and die swell. To avoid extraction losses of antioxidant as a result of contact with fluids duriag service, grades of NBR are available that have utilized a special third monomer that contains an antioxidant moiety (10). FiaaHy, terpolymers prepared from 1,3-butadiene, acrylonitrile, and isoprene are also commercially available. [Pg.522]

Ethylene oxide [75-21-8] was first prepared in 1859 by Wurt2 from 2-chloroethanol (ethylene chlorohydrin) and aqueous potassium hydroxide (1). He later attempted to produce ethylene oxide by direct oxidation but did not succeed (2). Many other researchers were also unsuccesshil (3—6). In 1931, Lefort achieved direct oxidation of ethylene to ethylene oxide using a silver catalyst (7,8). Although early manufacture of ethylene oxide was accompHshed by the chlorohydrin process, the direct oxidation process has been used almost exclusively since 1940. Today about 9.6 x 10 t of ethylene oxide are produced each year worldwide. The primary use for ethylene oxide is in the manufacture of derivatives such as ethylene glycol, surfactants, and ethanolamines. [Pg.450]


See other pages where Ethylene glycol preparation is mentioned: [Pg.4]    [Pg.4]    [Pg.94]    [Pg.137]    [Pg.165]    [Pg.55]    [Pg.681]    [Pg.869]    [Pg.281]    [Pg.354]    [Pg.218]    [Pg.416]    [Pg.63]    [Pg.65]    [Pg.512]    [Pg.127]    [Pg.233]    [Pg.303]    [Pg.88]    [Pg.290]    [Pg.13]    [Pg.252]    [Pg.208]    [Pg.37]    [Pg.308]    [Pg.308]   
See also in sourсe #XX -- [ Pg.208 , Pg.502 , Pg.503 , Pg.564 ]

See also in sourсe #XX -- [ Pg.208 , Pg.502 , Pg.503 , Pg.564 ]




SEARCH



Biodegradable Aliphatic Polyester Grafted with Poly(Ethylene Glycol) Having Reactive Groups and Preparation Method Thereof

Ethylene, preparation

Glycols preparation

Preparation of a Polyester from Ethylene Glycol and Dimethyl Terephthalate by Melt Condensation

© 2024 chempedia.info