Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic ethers, cationic polymerization

As with other cyclic ethers, cationic polymerization of trioxane proceeds through an oxonium cation as active center ... [Pg.556]

The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

The most important reaction with Lewis acids such as boron trifluoride etherate is polymerization (Scheme 30) (72MI50601). Other Lewis acids have been used SnCL, Bu 2A1C1, Bu sAl, Et2Zn, SO3, PFs, TiCU, AICI3, Pd(II) and Pt(II) salts. Trialkylaluminum, dialkylzinc and other alkyl metal initiators may partially hydrolyze to catalyze the polymerization by an anionic mechanism rather than the cationic one illustrated in Scheme 30. Cyclic dimers and trimers are often products of cationic polymerization reactions, and desulfurization of the monomer may occur. Polymerization of optically active thiiranes yields optically active polymers (75MI50600). [Pg.146]

A comparison of the cationic polymerization of 2,3-dihydrofurans with that of furan and 2-alkylfurans shows that the complications of the latters two, arising from the dienic character of the monomers, obviously vanish when the monomer is a simple cyclic vinyl ether with just one reactive site, viz. the carbon-carbon double bond. However, it also points out that ring opening in the polymerization of furans by acidic catalysts in the absence of water is unlikely, because otherwise it would also occur to some degree in the polymerization of dihydrofurans. [Pg.66]

Cationic polymerization of cyclic acetals generally involves equilibrium between monomer and polymer. The equilibrium nature of the cationic polymerization of 2 was ascertained by depolymerization experiments Methylene chloride solutions of the polymer ([P]0 = 1.76 and 1.71 base-mol/1) containing a catalytic amount of boron trifluoride etherate were allowed to stand for several days at 0 °C to give 2 which was in equilibrium with its polymer. The equilibrium concentrations ([M]e = 0.47 and 0.46 mol/1) were in excellent agreement with that found in the polymerization experiments under the same conditions. The thermodynamic parameters for the polymerization of 1 were evaluated from the temperature dependence of the equilibrium monomer concentrations between -20 and 30 °C. [Pg.54]

A special case of the internal stabilization of a cationic chain end is the intramolecular solvation of the cationic centre. This can proceed with the assistance of suitable substituents at the polymeric backbone which possess donor ability (for instance methoxy groups 109)). This stabilization can lead to an increase in molecular weight and to a decrease in non-uniformity of the products. The two effects named above were obtained during the transition from vinyl ethers U0) to the cis-l,2-dimethoxy ethylene (DME)1U). An intramolecular stabilization is discussed for the case of vinyl ether polymerization by assuming a six-membered cyclic oxonium ion 2) as well as for the case of cationic polymerization of oxygen heterocycles112). Contrary to normal vinyl ethers, DME can form 5- and 7-membe red cyclic intermediates beside 6-membered ringsIl2). [Pg.205]

Quite often in the ring-opening polymerization, the polymer is only the kinetic product and later is transformed to thermodynamically stable cycles. The cationic polymerization of ethylene oxide leads to a mixture of poly(ethylene oxide) and 1,4-dioxane. In the presence of a cationic initiator poly(ethylene oxide) can be almost quantitatively transformed to this cyclic dimer. On the other hand, anionic polymerization is not accompanied by cyclization due to the lower affinity of the alkoxide anion towards linear ethers only strained (and more electrophilic) monomers can react with the anion. [Pg.86]

Studies on the cationic polymerization of cyclic ethers, cyclic formals, lactones and other heterocyclic compounds have proliferated so greatly in the last few years that a detailed review of the evidence concerning participation of oxonium and analogous ions in these reactions cannot be given here. Suffice it to say that there is firm evidence for a few, and circumstantial evidence for many such systems, that the reactive species are indeed ions and there appears to be no evidence to the contrary. A few systems will be discussed in sub-sections 3.2 and 4.4. [Pg.114]

On the other hand, in cyclic ethers (alkene oxides, oxetans, tetrahydrofuran) and formals the reaction site is a carbon-oxygen bond, the oxygen atom is the most basic point, and, hence, cationic polymerization is possible. The same considerations apply to the polymerization of lactones Cherdron, Ohse and Korte showed that with very pure monomers polyesters of high molecular weight could be obtained with various cationic catalysts and syncatalysts, and proposed a very reasonable mechanism involving acyl fission of the ring [89]. [Pg.135]

Carbon-13 NMR Studies on the Cationic Polymerization of Cyclic Ethers... [Pg.237]

Many other cyclic ethers have been polymerized using cationic polymerization. Ethylene oxide (also called oxirane) polymerizes forming poly(ethylene oxide) (PEO) (structure 5.24) in the presence of acids such as sulfuric acid, producing a wide range of chain-sized polymers sold under various trade names including Carbowax and Poly ox. PEO is also used in cosmetics and pharmaceuticals (as water-soluble pill coatings and capsules). [Pg.141]

Propagation in the cationic polymerization of cyclic ethers is generally considered as proceeding via a tertiary oxonium ion, for example, for the polymerization of 3,3-bis(chlor-omethyl)oxetane (R = CH2C1)... [Pg.554]

Cationic polymerization of lactones is achieved with the range of initiators used for cyclic ethers (Sec. 7-2b) [Hofman et al., 1987a,b Kricheldorf and Sumbel, 1988a,b Kricheldorf et al., 1986, 1987a,b Kubisa, 1996 Penczek and Slomkowski, 1989a,b]. Initiation was formerly thought to involve attack of a positive species on the endocyclic oxygen to form an... [Pg.583]

Various endo-imino cyclic ethers (L) undergo cationic polymerization to yield poly(A-acylalkyleneimine)s (LI). The most widely studied monomers are the 2-substituted 2-oxazo-lines (m = 2) (also referred to as 2-substituted-l,3-oxazolin-2-enes) [Culbertson, 2002 ... [Pg.587]

It has long been accepted that cyclic ethers with more than four-membered rings are, in contrast to epoxides, only cationically polymerizable due to the high basicities of their ether oxygen atoms. The cationic polymerization involves 0-... [Pg.94]

It is generally agreed that propagation in the cationic polymerization of cyclic ethers occurs after nucleophilic attack by the monomer oxygen atom (equation 3). Therefore, many authors attempt to explain their copolymerization data by noting that the more basic monomer has the higher reactivity with the active chain end. The order of basicity which has been established (36, 38) is ... [Pg.585]

Diffiuex investigated a synthesis of cyclic poly(vinyl ether) using cationic polymerization [26,28]. The reaction process is depicted in Fig. 9. They studied on the living cationic polymerization of 2-chloroethyl vinyl ether (CEVE) initiated with the HI adduct of 4-(vinylbenzyloxy)butyl vinyl ether prepared by reacting chloromethyl styrene with sodium salt of 4-hydroxy-butyl vinyl ether in THF at 80 °C. By the cationic polymerization of CEVE, o /o-hetcrofunclional linear polymer precursor of cyclic poly(CEVE) was produced. The MWDs of the polymers were unimodal and very narrow (< 1.2),... [Pg.132]

Table 2. Oligomer formation during the cationic polymerization of cyclic ethers... [Pg.113]

Cationic Polymerization. Cationic polymerization is initiated by the transfer of a cation from the catalyst to the monomer. It allows a wider choice of monomers with double bonds, including carbonyls, cyclic ethers, and lactones. The ion may be within a carbonium or an oxonium ion. Friedel-Crafts halides, like AlCls or A CoHsJCL, are strong Lewis acids and initiate the polymerization directly. Weak Lewis acids need a... [Pg.10]

The initiation mechanism for cationic polymerization of cyclic ethers, vinyl amines, and alkoxy styrenes has been investigated by A. Ledwith. He used stable cations, like tropylium or triphenylmethyl cations with stable anions, like SbCl6, and distinguished between three initiation reactions cation additions, hydride abstraction, and electron transfer. One of the typical examples of cationic polymerization, in which the propagating species is the oxonium ion, is the polymerization of tetra-hydrofuran. P. and M. P. Dreyfuss studied this polymerization with the triethyloxonium salts of various counterions and established an order of... [Pg.11]

Touring the past five years we have shown that many stable organic cations are useful initiators for polymerizing reactive olefins and cyclic ethers (I, 2, 3, 4, 5, 27). Compared with more common initiators for cationic polymerization (31), the stable salts allow for complete characterization of the catalyst system and give rapid, highly reproducible polymerizations. In addition many of the salts used are stable indefinitely in the crystalline state, which makes the experimental techniques easy and convenient. [Pg.334]


See other pages where Cyclic ethers, cationic polymerization is mentioned: [Pg.13]    [Pg.114]    [Pg.518]    [Pg.656]    [Pg.661]    [Pg.202]    [Pg.245]    [Pg.564]    [Pg.586]    [Pg.596]    [Pg.208]    [Pg.631]    [Pg.183]    [Pg.352]    [Pg.227]    [Pg.146]    [Pg.840]    [Pg.1240]    [Pg.19]    [Pg.98]    [Pg.327]    [Pg.330]    [Pg.336]    [Pg.516]    [Pg.104]    [Pg.78]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Cationic polymerization

Cationic polymerization ethers

Cationic polymerization polymerizations

Cyclic polymerization

Ethere cyclic

Ethers cyclic

Ethers, cyclic polymerization

© 2024 chempedia.info