Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equipment pressure vessels

The team s expertise should be compatible with the kind of audit to be conducted. Audits of certain programs may require the selection of specialists in electrical equipment, pressure vessels, maintenance, motor fleet activities, and other fields. Line managers of other units are excellent members of audit teams. They bring a different background to spot weaknesses. In addition, participation is a learning experience for the manager and increases the involvement of those responsible for results. It may also be helpful to have a previous auditor of the unit as one member of the audit team. [Pg.311]

The chief application areas being explored and commercialized for ECPE fibers are divided between traditional fiber applications and high-tech composite applications. The former include sailcloth, marine ropes, cables, sewing thread, nettings, and protective clothing. The latter includes impact shields, ballistics, radomes, medical implants, sports equipment, pressure vessels, and boat hulls. [Pg.216]

All pressure equipment should be tested or inspected periodically. The interval between tests or inspections is determined by the severity of the usage the equipment has received. Corrosive or otherwise hazardous service requires more frequent tests and inspections. Inspection data should be stamped on or attached to the equipment. Pressure vessels may be subjected to nondestructive inspections such as visual inspection, penetrant inspection, acoustic emissions recording, and radiography. However, hydrostatic proof tests are necessary for final acceptance. These tests should be as infrequent as possible. They should be performed before the vessel is placed in initial service, every 10 years thereafter, after a significant repair or modification, and if the vessel experiences ovrapressure or overtemperature. [Pg.130]

Fang Ziyan, Liu Genfan,Yu Jiuyang. 1988. Analysis and Calculation of the Vibration Characteristics ofTower Equipment. Pressure Vessel Technology 5(l) 55-60. [Pg.106]

The experimental activity was carried out on a cylindrical pressure vessel whose capacity is 50 litres and made from steel 3 mm thick. Fig. 2 shows the layout of the pressure vessel considered. The pressure vessel was connected to an oil hydraulics apparatus providing a cyclical pressure change of arbitrary amplitude and frequency (fig.3). Furthermore the vessel was equipped with a pressure transducer and some rosetta strain gauges to measure the stresses on the shell and heads. A layout of the rosetta strain gauges locations is shown in fig.4. [Pg.410]

An experimental activity on the stress measurement of a pressure vessel using the SPATE technique was carried out. It was demontrated that this approach allows to define the distribution of stress level on the vessel surface with a quite good accuracy. The most significant advantage in using this technique rather than others is to provide a true fine map of stresses in a short time even if a preliminary meticolous calibration of the equipment has to be performed. [Pg.413]

The pressure equipment directive was adopted by the European Parliament and the European Council in May 1997. It harmonises the national laws of the 15 Member States of the European Union relating to equipment subject to the pressure risk. That directive is one of the series of technical harmonisation directives such as for machinery, medical devices, simple pressure vessels, gas appliances and so on, which were foreseen by the Communities programme for the elimination of technical barriers to trade. It therefore aims to ensure the free placing on the market and putting into service of the equipment concerned within the European Union and the European Economic Area. At the same time it permits a flexible regulatory environment, allowing European industry to develop new techniques increasing thereby its international competitiveness. [Pg.937]

Certain types of equipment are specifically excluded from the scope of the directive. It is self-evident that equipment which is already regulated at Union level with respect to the pressure risk by other directives had to be excluded. That is the case with simple pressure vessels, transportable pressure equipment, aerosols and motor vehicles. Other equipment, such as carbonated drink containers or radiators and piping for hot water systems are excluded from the scope because of the limited risk involved. Also excluded are products which are subject to a minor pressure risk which are covered by the directives on machinery, lifts, low voltage, medical devices, gas appliances and on explosive atmospheres. A further and last group of exclusions refers to equipment which presents a significant pressure risk, but for which neither the free circulation aspect nor the safety aspect necessitated their inclusion. [Pg.941]

Chlorine is stored and transported as a Hquefied gas in cylinders of 45.4-kg or 68-kg capacity that are under pressure and equipped with fusible-plug rehef devices. Quantities in the range of 15 to 90 t are transported in tank cars having special angle valves on the manhole cover on top of the vessel. Tank barges of the open-hopper type having several cylindrical uninsulated pressure vessels are used for amounts ranging from 600 to 1200 t. Road tankers are used for capacities of 15 to 20 t. [Pg.510]

In designing faciUties for handling and processing nitromethane, it is recommended that nitromethane not be processed in high pressure equipment. AH vessels for nitromethane service should be protected to prevent adiabatic compression. Detonation traps should be installed at each end of transfer lines and in every 61 m (200 feet) of continuous line. Nitromethane lines should be located underground or in channels wherever possible. Pressure rehef devices (rated - 690 kPa = 100 psig) should be installed between closed valves (81). [Pg.103]

Storage of Flammable Materials. The preferred storage for flammable Hquids or gases is in properly designed tanks. Floating roof tanks frequently are used in the petroleum industry for flammable cmdes and products (see Tanks and pressure vessels). The vents on cone roof tanks should either be equipped with flame arrestors or the vapor space above the contents should be inerted with a nonflammable gas or vapor, unless the flash point is weU above the maximum ambient temperature, the contents are not heated above the flash point, and the tank is not exposed to other tanks containing flammable Hquids. [Pg.96]

Reductive alkylations and aminations requite pressure-rated reaction vessels and hiUy contained and blanketed support equipment. Nitrile hydrogenations are similar in thein requirements. Arylamine hydrogenations have historically required very high pressure vessel materials of constmction. A nominal breakpoint of 8 MPa (- 1200 psi) requites yet heavier wall constmction and correspondingly more expensive hydrogen pressurization. Heat transfer must be adequate, for the heat of reaction in arylamine ring reduction is - 50 kJ/mol (12 kcal/mol) (59). Solvents employed to maintain catalyst activity and improve heat-transfer efficiency reduce effective hydrogen partial pressures and requite fractionation from product and recycle to prove cost-effective. [Pg.211]

There are many different equipment options avaQable to suit specific product needs including continuous winders for pipe, multiaxis winders for pressure vessels, and simple lathe-type winders for tanks and large pipe. Specialty machines combine a chopped reinforcement with continuous fibers for tank walls and large-diameter pipe where both stiffness and tensQe strength are required. Textile braiders have also been adapted for use as continuous... [Pg.96]

Quenched and Tempered Low Carbon Constructional Alloy Steels. A class of quenched and tempered low carbon constmctional ahoy steels has been very extensively used in a wide variety of appHcations such as pressure vessels, mining and earth-moving equipment, and in large steel stmctures (see Tanks and pressure vessels). [Pg.397]

Sulfurization of unsaturated compounds and meicaptans is normally carried out at atmospheric pressure, in a mild or stainless steel, batch-reaction vessel equipped with an overhead condenser, nitrogen atmosphere, an agitator, heating media capable of 120—215°C temperatures and a scmbber (typically caustic bleach or diethanolamine) capable of handling hydrogen sulfide. If the reaction iavolves the use of H2S as a reactant or the olefin or mercaptan is a low boiling material, a stainless steel pressurized vessel is recommended. [Pg.207]

Sulfurchlorination of unsaturated compounds or mercaptans is normally carried out at atmospheric pressure in a glass-lined reaction vessel because of the potential to Hberate HCl during the reaction. The sulfurchlorination vessel is equipped with a cooling jacket or coils (very exothermic reaction), a nitrogen or dry air sparging system, an overhead condenser, and a caustic or bleach scmbber. If one of the reactants (olefin or mercaptan) is alow boiling material, ie, isobutylene, a glass-lined pressure vessel is recommended. [Pg.207]

Storage tanks should be designed in accordance with the ASME code for unfited pressure vessels. AH-welded constmction is recommended. Ethylene oxide storage tanks should be electrically grounded, isolated from potential fire hazards, and equipped with pressure rehef devices. New equipment should be cleaned of iron oxide and immediately purged with inert gas. [Pg.462]

For most processes, the optimum operating point is determined by a constraint. The constraint might be a product specification (a product stream can contain no more than 2 percent ethane) violation of this constraint causes off-specification product. The constraint might be an equipment hmit (vessel pressure rating is 300 psig) violation of this constraint causes the equipment protection mechanism (pressure relief device) to activate. As the penalties are serious, violation of such constraints must be very infrequent. [Pg.730]

Shell and Tube Heat Exchangers for General Piefineiy Seivices, API Standard 660, 4th ed., 1982, is published by the American Petroleum Institute to supplement both the TEMA Standards and the ASME Code. Many companies in the chemical and petroleum processing fields have their own standards to supplement these various requirements. The Jnterrelation.ships between Codes, Standards, and Customer Specifications for Proce.ss Heat Tran.sfer Equipment is a symposium volume which was edited by F. L. Rubin and pubhshed by ASME in December 1979. (See discussion of pressure-vessel codes in Sec. 6.)... [Pg.1065]

Accelerating Rate Calorimeter (ARC) The ARC can provide extremely useful and valuable data. This equipment determines the self-heating rate of a chemical under near-adiabatic conditions. It usu-aUy gives a conservative estimate of the conditions for and consequences of a runaway reaction. Pressure and rate data from the ARC may sometimes be used for pressure vessel emergency relief design. Activation energy, heat of reaction, and approximate reaction order can usually be determined. For multiphase reactions, agitation can be provided. [Pg.2312]

The ASME code provides the basic requirements for over-pressure protection. Section I, Power Boilers, covers fired and unfired steam boilers. All other vessels including exchanger shells and similar pressure containing equipment fall under Section VIII, Pressure Vessels. API RP 520 and lesser API documents supplement the ASME code. These codes specify allowable accumulation, which is the difference between relieving pressure at which the valve reaches full rated flow and set pressure at which the valve starts to open. Accumulation is expressed as percentage of set pressure in Table 1. The articles by Rearick and Isqacs are used throughout this section. [Pg.16]

This family of filters consist of a vertical pressure vessel with a horizontal filter plate at the bottom. The filtrate from this equipment flows out a nozzle on the bottom of the filter. These devises are usually used for slurries where large amounts of solids are being collected. Variations of this equipment include equipment with removable lower heads for easy cake removal, ability to pressure or vacuum filter, ability to wash the filter cake, an agitator to break-up and rewash the filter cake, and heating or cooling jackets for the whole vessel. The Nutsche filter is the industrial version of the well known laboratory scale Buchner Funnel with the exception that it is designed to operate under either on vacuum or pressure. [Pg.199]


See other pages where Equipment pressure vessels is mentioned: [Pg.1080]    [Pg.2]    [Pg.5]    [Pg.882]    [Pg.729]    [Pg.1080]    [Pg.2]    [Pg.5]    [Pg.882]    [Pg.729]    [Pg.343]    [Pg.405]    [Pg.459]    [Pg.151]    [Pg.129]    [Pg.132]    [Pg.132]    [Pg.99]    [Pg.127]    [Pg.302]    [Pg.311]    [Pg.1029]    [Pg.1029]    [Pg.1126]    [Pg.1126]    [Pg.1548]    [Pg.2325]    [Pg.441]    [Pg.11]    [Pg.167]    [Pg.315]   
See also in sourсe #XX -- [ Pg.265 , Pg.269 ]




SEARCH



Equipment vessels

Pressure vessels

Safe use of pressure vessels and lifting equipment

Special Equipment Requirements for Pressure Vessels (Including Exchanger Shells, Channels, etc

© 2024 chempedia.info