Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constants solution

Equilibrium constant Solute transfer rate Volume... [Pg.451]

One can write acid-base equilibrium constants for the species in the inner compact layer and ion pair association constants for the outer compact layer. In these constants, the concentration or activity of an ion is related to that in the bulk by a term e p(-erp/kT), where yp is the potential appropriate to the layer [25]. The charge density in both layers is given by the algebraic sum of the ions present per unit area, which is related to the number of ions removed from solution by, for example, a pH titration. If the capacity of the layers can be estimated, one has a relationship between the charge density and potential and thence to the experimentally measurable zeta potential [26]. [Pg.178]

To proceed fiirther, to evaluate the standard free energy AG , we need infonnation (experimental or theoretical) about the particular reaction. One source of infonnation is the equilibrium constant for a chemical reaction involving gases. Previous sections have shown how the chemical potential for a species in a gaseous mixture or in a dilute solution (and the corresponding activities) can be defined and measured. Thus, if one can detennine (by some kind of analysis)... [Pg.364]

The solubilization of diverse solutes in micelles is most often examined in tenns of partitioning equilibria, where an equilibrium constant K defines the ratio of the mole fraction of solute in the micelle (X and the mole fraction of solute in the aqueous pseudophase. This ratio serves to define the free energy of solubilization -RT In K). [Pg.2592]

However, in dilute solution [H O] is virtually conslant ([H,0] = 55.5 since 1 litre of water contains 1000/18 mol of H O) and taking this into the above expression for the equilibrium constant we obtain a second constant... [Pg.86]

Hydrogen sulphide is slightly soluble in water, giving an approximately 0.1 M solution under 1 atmosphere pressure it can be removed from the solution by boiling. The solution is weakly acidic and dissolves in alkalis to give sulphides and hydrogensulphides. The equilibrium constants... [Pg.283]

Equilibria in Solution The stability of a protein-ligand complex in solution is measured in terms of the equilibrium constant and the standard free energy of association based on it. For association of species P and L in solution to form a complex PL, i.e., for... [Pg.130]

Perhaps the most extensively studied catalytic reaction in acpreous solutions is the metal-ion catalysed hydrolysis of carboxylate esters, phosphate esters , phosphate diesters, amides and nittiles". Inspired by hydrolytic metalloenzymes, a multitude of different metal-ion complexes have been prepared and analysed with respect to their hydrolytic activity. Unfortunately, the exact mechanism by which these complexes operate is not completely clarified. The most important role of the catalyst is coordination of a hydroxide ion that is acting as a nucleophile. The extent of activation of tire substrate througji coordination to the Lewis-acidic metal centre is still unclear and probably varies from one substrate to another. For monodentate substrates this interaction is not very efficient. Only a few quantitative studies have been published. Chan et al. reported an equilibrium constant for coordination of the amide carbonyl group of... [Pg.46]

In determining the values of Ka use is made of the pronounced shift of the UV-vis absorption spectrum of 2.4 upon coordination to the catalytically active ions as is illustrated in Figure 2.4 ". The occurrence of an isosbestic point can be regarded as an indication that there are only two species in solution that contribute to the absorption spectrum free and coordinated dienophile. The exact method of determination of the equilibrium constants is described extensively in reference 75 and is summarised in the experimental section. Since equilibrium constants and rate constants depend on the ionic strength, from this point onward, all measurements have been performed at constant ionic strength of 2.00 M usir potassium nitrate as background electrolyte . [Pg.58]

A quantitative correlation between rate and equilibrium constants for the different metal ions is absent. The observed rate enhancements are a result of catalysis by the metal ions and are clearly not a result of protonation of the pyridyl group, since the pH s of all solutions were within the region where the rate constant is independent of the pH (Figure 2.1). [Pg.59]

The solubility of hydrogen chloride in solutions of aromatic hydrocarbons in toluene and in w-heptane at —78-51 °C has been measured, and equilibrium constants for Tr-complex formation evaluated. Substituent effects follow the pattern outlined above (table 6.2). In contrast to (T-complexes, these 7r-complexes are colourless and non-conducting, and do not take part in hydrogen exchange. [Pg.117]

The strength of a weak acid is measured by its acid dissociation constant, which IS the equilibrium constant for its ionization m aqueous solution... [Pg.33]

According to the Arrhenius definitions an acid ionizes m water to pro duce protons (H" ) and a base produces hydroxide ions (HO ) The strength of an acid is given by its equilibrium constant for ionization m aqueous solution... [Pg.49]

Table 8.9 Selected Equilibrium Constants in Aqueous Solution at Various... Table 8.9 Selected Equilibrium Constants in Aqueous Solution at Various...
Analytical chemistry is inherently a quantitative science. Whether determining the concentration of a species in a solution, evaluating an equilibrium constant, measuring a reaction rate, or drawing a correlation between a compound s structure and its reactivity, analytical chemists make measurements and perform calculations. In this section we briefly review several important topics involving the use of numbers in analytical chemistry. [Pg.12]

Most reactions involve reactants and products that are dispersed in a solvent. If the amount of solvent is changed, either by diluting or concentrating the solution, the concentrations of ah reactants and products either decrease or increase. The effect of these changes in concentration is not as intuitively obvious as when the concentration of a single reactant or product is changed. As an example, let s consider how dilution affects the equilibrium position for the formation of the aqueous silver-amine complex (reaction 6.28). The equilibrium constant for this reaction is... [Pg.149]

Besides equilibrium constant equations, two other types of equations are used in the systematic approach to solving equilibrium problems. The first of these is a mass balance equation, which is simply a statement of the conservation of matter. In a solution of a monoprotic weak acid, for example, the combined concentrations of the conjugate weak acid, HA, and the conjugate weak base, A , must equal the weak acid s initial concentration, Cha- ... [Pg.159]

Since the concentrations of Na+, A-, HA, H3O+, and OH- are unknown, five equations are needed to uniquely define the solution s composition. Two of these equations are given by the equilibrium constant expressions... [Pg.168]

The true thermodynamic equilibrium constant is a function of activity rather than concentration. The activity of a species, a, is defined as the product of its molar concentration, [A], and a solution-dependent activity coefficient, Ya. [Pg.172]

Several features of equation 6.50 deserve mention. First, as the ionic strength approaches zero, the activity coefficient approaches a value of one. Thus, in a solution where the ionic strength is zero, an ion s activity and concentration are identical. We can take advantage of this fact to determine a reaction s thermodynamic equilibrium constant. The equilibrium constant based on concentrations is measured for several increasingly smaller ionic strengths and the results extrapolated... [Pg.173]

You should be able to describe a system at equilibrium both qualitatively and quantitatively. Rigorous solutions to equilibrium problems can be developed by combining equilibrium constant expressions with appropriate mass balance and charge balance equations. Using this systematic approach, you can solve some quite complicated equilibrium problems. When a less rigorous an-... [Pg.176]

A quantitative solution to an equilibrium problem may give an answer that does not agree with the value measured experimentally. This result occurs when the equilibrium constant based on concentrations is matrix-dependent. The true, thermodynamic equilibrium constant is based on the activities, a, of the reactants and products. A species activity is related to its molar concentration by an activity coefficient, where a = Yi[ ] Activity coefficients often can be calculated, making possible a more rigorous treatment of equilibria. [Pg.176]

Balance the following redox reactions, and calculate the standard-state potential and the equilibrium constant for each. Assume that the [H3O+] is 1 M for acidic solutions, and that the [OH ] is 1 M for basic solutions. [Pg.177]

An equilibrium constant describing the distribution of a solute between two phases only one form of the solute is used in defining the partition coefficient... [Pg.211]

In a simple liquid-liquid extraction the solute is partitioned between two immiscible phases. In most cases one of the phases is aqueous, and the other phase is an organic solvent such as diethyl ether or chloroform. Because the phases are immiscible, they form two layers, with the denser phase on the bottom. The solute is initially present in one phase, but after extraction it is present in both phases. The efficiency of a liquid-liquid extraction is determined by the equilibrium constant for the solute s partitioning between the two phases. Extraction efficiency is also influenced by any secondary reactions involving the solute. Examples of secondary reactions include acid-base and complexation equilibria. [Pg.215]

This distinction between Kd and D is important. The partition coefficient is an equilibrium constant and has a fixed value for the solute s partitioning between the two phases. The value of the distribution ratio, however, changes with solution conditions if the relative amounts of forms A and B change. If we know the equilibrium reactions taking place within each phase and between the phases, we can derive an algebraic relationship between Kd and D. [Pg.216]

To determine the equilibrium constant s value, we prepare a solution in which the reaction exists in a state of equilibrium and determine the equilibrium concentration of H3O+, HIn, and Im. The concentration of H3O+ is easily determined by measuring... [Pg.407]

Aqueous solutions buffered to a pH of 5.2 and containing known total concentrations of Zn + are prepared. A solution containing ammonium pyrrolidinecarbodithioate (APCD) is added along with methyl isobutyl ketone (MIBK). The mixture is shaken briefly and then placed on a rotary shaker table for 30 min. At the end of the extraction period the aqueous and organic phases are separated and the concentration of zinc in the aqueous layer determined by atomic absorption. The concentration of zinc in the organic phase is determined by difference and the equilibrium constant for the extraction calculated. [Pg.449]

The equilibrium constant for an acid-base indicator is determined by preparing three solutions, each of which has a total indicator concentration of 1.35 X lQ-5 M. The pH of the first solution is adjusted until it is acidic enough to ensure that only the acid form of the indicator is present, yielding an absorbance of 0.673. The absorbance of the second solution, whose pH was adjusted to give only the base form of the indicator, was measured at 0.118. The pH of the third solution was adjusted to 4.17 and had an absorbance of 0.439. What is the acidity constant for the acid-base indicator ... [Pg.455]

Determining Equilibrium Constants for Coupled Chemical Reactions Another important application of voltammetry is the determination of equilibrium constants for solution reactions that are coupled to a redox reaction occurring at the electrode. The presence of the solution reaction affects the ease of electron transfer, shifting the potential to more negative or more positive potentials. Consider, for example, the reduction of O to R... [Pg.528]


See other pages where Equilibrium constants solution is mentioned: [Pg.316]    [Pg.392]    [Pg.2951]    [Pg.588]    [Pg.67]    [Pg.83]    [Pg.102]    [Pg.106]    [Pg.141]    [Pg.152]    [Pg.172]    [Pg.174]    [Pg.365]    [Pg.365]    [Pg.484]    [Pg.771]    [Pg.776]   
See also in sourсe #XX -- [ Pg.606 ]




SEARCH



Constant solution

Determination of Equilibrium Constants in Solution via ESI-MS

Dilute solution equilibrium constant

Equilibrium constant aqueous solution, reactions involving

Equilibrium constant buffer solutions

Equilibrium constants aqueous solution

Equilibrium constants solute concentration

Equilibrium constants solution reactions

Liquid-solid solution equilibria at constant pressure

Selected Equilibrium Constants in Aqueous Solution at Various Temperatures

Solutal equilibrium

Solute equilibrium constant

Solute equilibrium constant

Solutes equilibrium

Solution chemistry equilibrium constants

Solution-vapour equilibrium constant pressure curves

Solutions equilibrium

© 2024 chempedia.info