Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constant buffer solutions

Aqueous solutions buffered to a pH of 5.2 and containing known total concentrations of Zn + are prepared. A solution containing ammonium pyrrolidinecarbodithioate (APCD) is added along with methyl isobutyl ketone (MIBK). The mixture is shaken briefly and then placed on a rotary shaker table for 30 min. At the end of the extraction period the aqueous and organic phases are separated and the concentration of zinc in the aqueous layer determined by atomic absorption. The concentration of zinc in the organic phase is determined by difference and the equilibrium constant for the extraction calculated. [Pg.449]

These reactions have very large equilibrium constants, as we will see in Section 14.3, and so go virtually to completion. As a result, the added H+ or OH- ions are consumed and do not directly affect the pH. This is the principle of buffer action, which explains why a buffered solution is much more resistant to a change in pH than one that is unbuffered (Figure 14.1, p. 384). [Pg.383]

The pH of a buffer solution depends on the weak acid equilibrium constant and the concentrations of the weak acid and its conjugate base. To show this, we begin by taking the logarithm of the acid equilibrium constant ... [Pg.1280]

We use the seven-step strategy for equilibrium problems, except that we identity this as a buffer solution. This allows us to use the buffer equation in place of an equilibrium constant expression. [Pg.1281]

This proton transfer reaction involves the second acidic hydrogen atom of carbonic acid, so the appropriate equilibrium constant is. a 2 > whose p is found in Appendix E p. a 2 — 10.33. Because this is a buffer solution, we apply the buffer equation ... [Pg.1281]

Use the seven-step strategy to calculate the pH of the buffer solution using the buffer equation. Then compare the amount of acid in the solution with the amount of added base. Buffer action is destroyed if the amount of added base is sufficient to react with all the acid.The buffering action of this solution is created by the weak acid H2 PO4 and its conjugate base HP04. The equilibrium constant for this... [Pg.1284]

In a typical SPR experiment real-time kinetic study, solution flows over the surface, so desorption of the guest immobilized on the surface due to this flow must be avoided.72 In the first stage of a typical experiment the mobile reactant is introduced at a constant concentration ([H]0) into the buffer flowing above the surface-bound reactant. This favors complex association, and the progress of complex formation at the surface is monitored. The initial phase is then followed by a dissociation phase where the reactant is removed from the solution flowing above the surface, and only buffer is passed over the surface to favor dissociation of the complex.72 74 The obtained binding curves (sensograms) contain information on the equilibrium constant of the interaction and the association and dissociation rate constants for complex formation (Fig. 9). [Pg.184]

The kinetics of the ionic hydrogenation of isobutyraldehyde were studied using [CpMo(CO)3H] as the hydride and CF3C02H as the acid [41]. The apparent rate decreases as the reaction proceeds, since the acid is consumed. However, when the acidity is held constant by a buffered solution in the presence of excess metal hydride, the reaction is first-order in acid. The reaction is also first-order in metal hydride concentration. A mechanism consistent with these kinetics results is shown in Scheme 7.8. Pre-equilibrium protonation of the aldehyde is followed by rate-determining hydride transfer. [Pg.171]

Each species within a buffer solution participates in an equilibrium reaction, as characterized by an equilibrium constant K. Adding an acid (or base) to a buffer solution causes the equilibrium to shift, thereby preventing the number of protons from changing, itself preventing changes in the pH. The change in the reaction s position of equilibrium is another manifestation of Le Chatelier s principle (see p. 166). [Pg.269]

The equilibrium constant for this reaction depends on the stability constants of the ionophore-M+ complexes and on the distribution of ions in aqueous test solution and organic membrane phases. For a membrane of fixed composition exposed to a test solution of a given pH, the optical absorption of the membrane depends on the ratio of the protonated and deprotonated indicator which is controlled by the activity of M+ in the test solution (H,tq, is fixed by buffer). By using a to represent the fraction of total indicator (Ct) in the deprotonated form ([C]), a can be related to the absorbance values at a given wavelength as... [Pg.766]

As a measure of their thermodynamic stability, the pAfR+ values for the carbocation salts were determined spectrophotometrically in a buffer solution prepared in aqueous solution of acetonitrile. The KR+ scale is defined by the equilibrium constant for the reaction of a carbocation with water molecule (/CR+ = [R0H][H30+]/[R+]). Therefore, the larger p/CR+ index indicates higher stability for the carbocation. However, the neutralization of these cations was not completely reversible. This is attributable to instability of the neutralized products. The instability of the neutralized products should arise from production of unstable polyolefinic substructure by attack of the base at the aromatic core. [Pg.177]

You learned about acids and bases in your previous chemistry course. In this chapter, you will extend your knowledge to learn how the structure of a compound determines whether it is an acid or a base. You will use the equilibrium constant of the reaction of an acid or base with water to determine whether the acid or base is strong or weak. You will apply your understanding of dissociation and pH to investigate buffer solutions solutions that resist changes in pH. Finally, you will examine acid-base titrations that involve combinations of strong and weak acids and bases. [Pg.376]

All membrane exposures were carried out by soak testing under equilibrium conditions at fixed concentrations and constant pH. Pretreatment chemicals were added to buffer solutions at pH 3.0, 5.8 and 8.6. These buffers, representing an arbitrary pH range were prepared according to directions given by Perrin and Dempsey... [Pg.172]

Now consider a primary standard buffer containing 0.025 0 m KH2P04 and 0.025 0 m Na2HP04. Its pH at 25°C is 6.865 0.006.4 The concentration unit, m, is molality, which means moles of solute per kilogram of solvent. For precise chemical measurements, concentrations are often expressed in molality, rather than molarity, because molality is independent of temperature. Tabulated equilibrium constants usually apply to molality, not molarity. Uncertainties in equilibrium constants are usually sufficiently great so that the 0.3% difference between molality and molarity of dilute solutions is unimportant. [Pg.254]

A more comprehensive analysis of the influences on the ozone solubility was made by Sotelo et al., (1989). The Henry s Law constant H was measured in the presence of several salts, i. e. buffer solutions frequently used in ozonation experiments. Based on an ozone mass balance in a stirred tank reactor and employing the two film theory of gas absorption followed by an irreversible chemical reaction (Charpentier, 1981), equations for the Henry s Law constant as a function of temperature, pH and ionic strength, which agreed with the experimental values within 15 % were developed (Table 3-2). In this study, much care was taken to correctly analyse the ozone decomposition due to changes in the pH as well as to achieve the steady state experimental concentration at every temperature in the range considered (0°C [Pg.86]

Covey and Leussing330,357 have studied keto-enol tautomerism rates for oxaloacetate (oxac2-) and zinc(II) oxaloacetate complexes in acetate buffer solutions at 25 °C. Thus for the equilibrium oxacketo2 oxaceno,2- the value of fcf, the rate constant for the forward reaction, for the reaction oxacketo2 + OAc is 6.6 x 10 3 M-1 s 3 while for Zn(oxac)kcto) + OAc, kf is 25 M 1 s 1. The rate... [Pg.473]

In buffered solutions, the term k2KsKi [S]/[SH+] is constant, so the expected overall rate law is again second order (i.e. pseudo first order in [Y ]) but the correspondence of fcQbs with mechanistic rate constants is different. Of course, if the equilibrium constant Ki is appreciable, the phenolate concentration must be taken into account in the mass balance for the total phenol, i.e. [ArOH]T [ArOH]free + [ArOH- -S] + [ArO-], whereupon the mechanistic rate equation becomes more complicated. [Pg.100]

This involves the use of a special rotor and the adaptation of the centrifuge for constant flow as for the zonal rotor. This is expensive, but once installed, reproducible separations of 108-109 cells can be achieved in under an hour and cells of all sizes (rather than just the smallest) are obtained. It is particularly suited to the isolation of Gl-phase cells from suspension cultures for which mitotic detachment procedures are not applicable. The separation chamber is kite-shaped with the buffer solution entering at the acute point on the rim of the centrifuge and leaving at the obtuse point towards the centre of rotation (Fig. 11.2). Thus the centrifugal forces on particles within the chamber are countered by the centripetal flow of buffer and particles come to equilibrium within the chamber. When equilibrium has been reached, the samples are pumped out, by increasing the rate of buffer flow, and collected. Meistrich et al. (1977) obtained 3 fractions of L-P59 mouse fibroblasts which were over 90% Gl-phase, 70% S-phase cells and 60% G2 + M-phase cells, respectively. [Pg.219]

It is unfortunate that there has been so little work devoted to quantitative measurements of cation-pseudobase equilibria in methanol and ethanol since these media have several advantages over water for the determination of the relative susceptibilities of heterocyclic cations to pseudobase formation. The enhanced stability of the pseudobase relative to the cation in alcohols compared to water is discussed earlier this phenomenon will permit the quantitative measurement of pseudobase formation in methanol (and especially ethanol) for many heterocyclic cations for which the equilibrium lies too far in favor of the cation in aqueous solution to allow a direct measurement of the equilibrium constant. Furthermore, the deprotonation of hydroxide pseudobases (Section V,B) and the occurrence of subsequent irreversible reactions (Sections V,C and D), which complicate measurements for pKR+ > 14 in aqueous solutions, are not problems in alcohol solutions. Data are now available for the preparation of buffer solutions in methanol over a wide range of acidities.309-312 An appropriate basicity function scale will be required for more basic solutions. The series of -(substituted phenyl)pyridinium cations (163) studied by Kavalek et al.i2 should be suitable for use as indicators in at least some of the basic region. The Hm and Jm basicity functions313 should not be assumed90 to apply to methoxide ion addition to heterocyclic cations because of the differently charged species involved in the indicators used to construct these scales. [Pg.66]


See other pages where Equilibrium constant buffer solutions is mentioned: [Pg.364]    [Pg.94]    [Pg.100]    [Pg.118]    [Pg.86]    [Pg.62]    [Pg.103]    [Pg.200]    [Pg.240]    [Pg.132]    [Pg.165]    [Pg.749]    [Pg.339]    [Pg.341]    [Pg.133]    [Pg.187]    [Pg.164]    [Pg.371]    [Pg.371]    [Pg.156]    [Pg.225]    [Pg.51]    [Pg.1134]    [Pg.430]    [Pg.143]    [Pg.260]    [Pg.197]    [Pg.198]    [Pg.70]    [Pg.339]    [Pg.341]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Buffer solutions

Buffered solution

Constant solution

Equilibrium constants solution

Solutal equilibrium

Solute equilibrium constant

Solutes equilibrium

Solutions equilibrium

© 2024 chempedia.info