Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme-selective electrodes

The principle of these electrodes is a little different, and is normally based on the measurement of the pH of a solution of electrolyte placed between a membrane and a glass electrode, the membrane being porous to the species it is desired to determine (Table 13.3). The dissolved gas conditions the pH of the solution behind the membrane. Membranes can be microporous (for example PTFE) or homogeneous (for example silicone rubber). [Pg.303]

It should be noted that some gas-sensitive sensors are amperometric, as in the Clark electrode for oxygen (Section 14.3). [Pg.303]

Another type of sensor is a high-temperature solid-state potentiometric sensor for oxygen ( 400°C) in industrial processes. These are based on the measurement of the potential of a concentration cell of the type [Pg.303]

02 (test), M zirconia solid electrolyte (Zr02) M , 02 (ref.) where M and M are metallic contacts12. [Pg.303]

Enzymes are substances that react very selectively with a substrate in a very specific reaction. Their immobilization on a membrane which is then placed over an electrode in a solution together with the substrate to be determined leads to reaction products that can be detected at the electrode covered by the membrane. An example is the degradation of urea by urease with an internal sensor element (i.e. ion-selective electrode) sensitive to ammonium ion  [Pg.303]


Enzyme-selective electrodes (Fig. 17.11) have been made as a membrane containing immobilized enzymes placed over a pH electrode or over a gas electrode such as an ammonia electrode for potentiometric detection, or over an oxygen electrode for amperometric detection. The products of the reaction of enzyme with substrate are detected by the electrode. [Pg.387]

An electrode that responds to the concentration of a substrate by reacting the substrate with an immobilized enzyme, producing an ion that can be monitored with an ion-selective electrode. [Pg.484]

Potcntiomctric Biosensors Potentiometric electrodes for the analysis of molecules of biochemical importance can be constructed in a fashion similar to that used for gas-sensing electrodes. The most common class of potentiometric biosensors are the so-called enzyme electrodes, in which an enzyme is trapped or immobilized at the surface of an ion-selective electrode. Reaction of the analyte with the enzyme produces a product whose concentration is monitored by the ion-selective electrode. Potentiometric biosensors have also been designed around other biologically active species, including antibodies, bacterial particles, tissue, and hormone receptors. [Pg.484]

Potentiometric electrodes also can be designed to respond to molecules by incorporating a reaction producing an ion whose concentration can be determined using a traditional ion-selective electrode. Gas-sensing electrodes, for example, include a gas-permeable membrane that isolates the ion-selective electrode from the solution containing the analyte. Diffusion of a dissolved gas across the membrane alters the composition of the inner solution in a manner that can be followed with an ion-selective electrode. Enzyme electrodes operate in the same way. [Pg.532]

Such electrodes make use of an enzyme to convert the substance to be determined into an ionic product which can itself be detected by a known ion-selective electrode. A typical example is the urea electrode, in which the enzyme urease is employed to hydrolyse urea ... [Pg.562]

The sensor is an ammonium ion-selective electrode surrounded by a gel impregnated with the enzyme mease (Figme 6-11) (22). The generated ammonium ions are detected after 30-60 s to reach a steady-state potential. Alternately, the changes in the proton concentration can be probed with glass pH or other pH-sensitive electrodes. As expected for potentiometric probes, the potential is a linear function of the logarithm of the urea concentration in the sample solution. [Pg.181]

Give example of an enzyme electrode based on an ion-selective electrode transducer. What is the relationship between the substrate concentration and the potential response ... [Pg.202]

Conventional ion-selective electrodes have been used as detectors for immunoassays. Antibody binding measurements can be made with hapten-selective electrodes such as the trimethylphenylammonium ion electrode Enzyme immunoassays in which the enzyme label catalyzes the production of a product that is detected by an ion-selective or gas-sensing electrode take advantage of the amplification effect of enzyme catalysis in order to reach lower detection limits. Systems for hepatitis B surface antigen and estradiol use horseradish peroxidase as the enzyme label and... [Pg.15]

Kobos, R. K. Potentiometric Enzyme Methods, in Ion-Selective Electrodes in Analytical Chemistry, Vol. 2 (Freiser, H., ed.) New York Plenum Press, 1980, p. I... [Pg.42]

The demand for monitoring common metabolites of diagnostic utility such as glucose, urea and creatinine continue to provide the impetus for a staggering research effort towards more perfect enzyme electrodes. The inherent specificity of an enzyme for a given substrate, coupled with the ability to electrochemically detect many of the products of enzymatic reactions initiated the search for molecule-selective electrodes. [Pg.62]

There are also RMs which are prepared for a specific application and are used for validation of relevant methods. Cobbaert et al. (1999) made use of Ion Selective Electrode (ISE)-protein-based materials when evaluating a procedure which used an electrode with an enzyme-linked biosensor to determine glucose and lactate in blood. Chance et al. (1999) are involved with the diagnosis of inherited disorders in newborn children and they prepared a series of reference materials consisting of blood spotted onto filter paper and dried, from which amino-acids can be eluted and... [Pg.113]

Most suitable would be the use of a perfectly NH4+ ion-selective glass electrode however, a disadvantage of this type of enzyme electrode is the time required for the establishment of equilibrium (several minutes) moreover, the normal Nernst response of 59 mV per decade (at 25° C) is practically never reached. Nevertheless, in biochemical investigations these electrodes offer special possibilities, especially because they can also be used in the reverse way as an enzyme-sensing electrode, i.e., by testing an enzyme with a substrate layer around the bulb of the glass electrode. [Pg.84]

Also of great interest is the so-called FIA scanning as a method for investigating, for instance, the influence of pH on the solvent extraction of metal dithizonates95 by controlled-potential continuous alteration of the pH of the carrier stream. Many other investigations can thus be made, such as the catalytic activity of enzymes and the influence of pH on ion-selective electrodes. [Pg.359]

Due to their response mechanism the polyion-selective electrodes are not sensitive to the small fragments of polyionic macromolecules. Thus, if an enzyme cleaves the polyionic molecule these sensors can be used for detection of enzyme activity. Polycation protamine is rich in arginine residues that make it a suitable substrate for protease-sensitive electrochemical assays. Real-time detection of trypsine activity was demonstrated with the protamine-selective electrode as a detector [38],... [Pg.112]

It is important to compare the catalytic properties of Prussian blue with known hydrogen peroxide transducers. Table 13.2 presents the catalytic parameters, which are of major importance for analytical chemistry selectivity and catalytic activity. It is seen that platinum, which is still considered as the universal transducer, possesses rather low catalytic activity in both H202 oxidation and reduction. Moreover, it is nearly impossible to measure hydrogen peroxide by its reduction on platinum, because the rate of oxygen reduction is ten times higher. The situation is drastically improved in case of enzyme peroxidase electrodes. However, the absolute records of both catalytic activity... [Pg.443]

Potentiometric enzyme-based electrodes have found application in clinical, pharmaceutical, food and biochemical analyses to enable the selective determination of a wide range of important enzyme substrates, including amino acids, esters, amides, acylcholines, /Mactam antibiotics, sugars, enantioselective drugs and many others [74]. [Pg.658]

The techniques developed in enzyme immobilization have facilitated the development of enzyme electrodes and of novel enzyme -based, automated, analytical methods (l6,17,l8). Enzyme electrodes have resulted from the combination of an enzyme membrane and an ion-selective electrode they were used successfully to assay directly appropriate substrates. Enzyme columns or enzyme tubes, prepared in a conventional manner, were used as a specific auxiliary component in the indirect assay of substrates in many of the novel automated analytical procedures. [Pg.206]

Immobilized enzymes used in conjunction with ion-selective electrodes provide very convenient methods of analysis. The immobilized enzyme may be held in a gel or membrane around the electrode and the substance to be measured diffuses into the enzyme gel. Its conversion to the product alters the ionic equilibrium across the ion-selective membrane (Figure 8.23). It is important that the enzyme layer is thin, to minimize any problems caused by slow diffusion rates through the layer. [Pg.303]

Biological principles are also used in enzyme electrodes, where the sensor (usually an ion-selective electrode) is covered by a polymeric carrier containing an enzyme [32]. The determinand reacts in the enzyme layer yielding a product that causes a signal in the sensor. The bacterium electrode is based on a similar principle [84], as are electrodes using tissue in place of the enzyme layer [2]. [Pg.10]

Composite potentiometric sensors involve systems based on ion-selective electrodes separated from the test solution by another membrane that either selectively separates a certain component of the analyte or modifies this component by a suitable reaction. This group includes gas probes, enzyme electrodes and other biosensors. Gas probes are discussed in this section and chapter 8 is devoted to potentiometric biosensors. [Pg.77]

P. Vadgema, Enzyme Electrodes, in Ion-Selective Electrode Methodology... [Pg.207]

The classic potentiometric enzyme electrode is a combination of an ion-selective electrode-based sensor and an immobilized (insolubilized) enzyme. Few of the many enzyme electrodes based on potentiometric ion- and gas-selective membrane electrode transducers have been included in commercially available instruments for routine measurements of biomolecules in complex samples such as blood, urine or bioreactor media. The main practical limitation of potentiometric enzyme electrodes for this purpose is their poor selectivity, which does not arise from the biocatalytic reaction, but from the response of the base ion or gas transducer to endogenous ionic and gaseous species in the sample. [Pg.129]


See other pages where Enzyme-selective electrodes is mentioned: [Pg.289]    [Pg.303]    [Pg.303]    [Pg.289]    [Pg.303]    [Pg.303]    [Pg.772]    [Pg.103]    [Pg.108]    [Pg.223]    [Pg.866]    [Pg.79]    [Pg.75]    [Pg.10]    [Pg.69]    [Pg.71]    [Pg.587]    [Pg.352]    [Pg.112]    [Pg.185]    [Pg.267]    [Pg.428]    [Pg.365]    [Pg.201]    [Pg.39]    [Pg.82]    [Pg.39]    [Pg.129]   


SEARCH



Enzyme electrode

Enzyme selection

Enzyme selectivity

Enzyme-coupled devices, selective electrodes

© 2024 chempedia.info