Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme kinetics maximum rate

The substrate concentration at which an enzyme reaches one-half of its maximal catalytic activity is often used as a measure of the sensitivity of an enzyme to substrate saturation. This particular substrate concentration usually has about the same numerical value as Km, sometimes known as the Michaelis-Menten constant for the enzyme. The maximum rate of reaction per mole of enzyme is often given the symbol cat. and the maximum rate of reaction for a given enzyme concentration is often symbolized as Vmax- Often, the kinetics of more complex enzyme-catalyzed reactions can be placed in this form under some restricted range of conditions [1]. [Pg.179]

By protodetritiation of the thiazolium salt (152) and of 2 tritiothiamine (153) Kemp and O Brien (432) measured a kinetic isotope effect, of 2.7 for (152). They evaluated the rate of protonation of the corresponding yiides and found that the enzyme-mediated reaction of thiamine with pyruvate is at least 10 times faster than the maximum rate possible with 152. The scale of this rate ratio establishes the presence within the enzyme of a higher concentration of thiamine ylide than can be realized in water. Thus a major role of the enzyme might be to change the relative thermodynamic stabilities of thiamine and its ylide (432). [Pg.118]

Kinetics is the branch of science concerned with the rates of chemical reactions. The study of enzyme kinetics addresses the biological roles of enzymatic catalysts and how they accomplish their remarkable feats. In enzyme kinetics, we seek to determine the maximum reaction velocity that the enzyme can attain and its binding affinities for substrates and inhibitors. Coupled with studies on the structure and chemistry of the enzyme, analysis of the enzymatic rate under different reaction conditions yields insights regarding the enzyme s mechanism of catalytic action. Such information is essential to an overall understanding of metabolism. [Pg.431]

In the biomedical literature (e.g. solute = enzyme, drug, etc.), values of kf and kr are often estimated from kinetic experiments that do not distinguish between diffusive transport in the external medium and chemical reaction effects. In that case, reaction kinetics are generally assumed to be rate-limiting with respect to mass transport. This assumption is typically confirmed by comparing the adsorption transient to maximum rates of diffusive flux to the cell surface. Values of kf and kr are then determined from the start of short-term experiments with either no (determination of kf) or a finite concentration (determination of kT) of initial surface bound solute [189]. If the rate constant for the reaction at the cell surface is near or equal to (cf. equation (16)), then... [Pg.475]

In the equations describing enzyme kinetics in this chapter, the notation varies a bit from other chapters. Thus v is accepted in the biochemical literature as the symbol for reaction rate while Vmax is used for the maximum rate. Furthermore, for simplification frequently Vmax is truncated to V in complex formulas (see Equations 11.28 and 11.29). Although at first glance inconsistent, these symbols are familiar to students of biochemistry and related areas. The square brackets indicate concentrations. Vmax expresses the upper limit of the rate of the enzyme reaction. It is the product of the rate constant k3, also called the turnover number, and the total enzyme concentration, [E]o. The case u, = Vmax corresponds to complete saturation of all active sites. The other kinetic limit, = (Vmax/KM)[S], corresponds to Km >> [S], in other words Vmax/KM is the first order rate constant found when the substrate concentration approaches zero ... [Pg.345]

The major part of the reports discussed above provides only a qualitative description of the catalytic response, but the LbL method provides a unique opportunity to quantify this response in terms of enzyme kinetics and electron-hopping diffusion models. For example, Hodak et al. [77[ demonstrated that only a fraction of the enzymes are wired by the polymer. A study comprising films with only one GOx and one PAH-Os layer assembled in different order on cysteamine, MPS and MPS/PAH substrates [184[ has shown a maximum fraction of wired enzymes of 30% for the maximum ratio of mediator-to-enzyme, [Os[/[GOx[ fs 100, while the bimolecular FADH2 oxidation rate constant remained almost the same, about 5-8 x 10 s ... [Pg.100]

Apparent volume of distribution of free (unbound) drug Maximum rate of reaction (Michaebs-Menten enzyme kinetics) Dosing interval in terms of half-life (= Tjtip)... [Pg.17]

The Fc-HRP activity was quantified using two different substrates of HRP, i.e., ABTS and water-soluble ferrocene derivatives. Rate laws and kinetic parameters for native HRP and Fc-HRP have been compared. The native and the reconstituted enzymes catalyze the oxidation of ABTS in accordance with the Michaelis-Menten kinetics the inverse rate versus [ABTS]-1 plots are linear and the values of the maximum rates Vm and the Michaelis constant Km are summarized... [Pg.233]

It was pointed out in Chapter 3, section A3, that when kcJKM is at the diffusion-controlled limit, Briggs-Haldane rather than Michaelis-Menten kinetics are obeyed. Thus, the more advanced an enzyme is toward the evolution of maximum rate, the more important are Briggs-Haldane kinetics. [Pg.195]

Allosteric enzymes do not follow the Michaelis-Menten kinetic relationships between substrate concentration Fmax and Km because their kinetic behaviour is greatly altered by variations in the concentration of the allosteric modulator. Generally, homotrophic enzymes show sigmoidal behaviour with reference to the substrate concentration, rather than the rectangular hyperbolae shown in classical Michaelis-Menten kinetics. Thus, to increase the rate of reaction from 10 per cent to 90 per cent of maximum requires an 81-fold increase in substrate concentration, as shown in Fig. 5.34a. Positive cooperativity is the term used to describe the substrate concentration-activity curve which is sigmoidal an increase in the rate from 10 to 90 per cent requires only a nine-fold increase in substrate concentration (Fig. 5.346). Negative cooperativity is used to describe the flattening of the plot (Fig. 5.34c) and requires requires over 6000-fold increase to increase the rate from 10 to 90 per cent of maximum rate. [Pg.330]

Phosphofructokinase was one of the first enzymes to which Monod and his colleagues applied the symmetry model of allosteric transitions. It contains four identical subunits, each of which has both an active site and an allosteric site. The cooperativity of the kinetics suggests that the enzyme can adopt two different conformations (T and R) that have similar affinities for ATP but differ in their affinity for fructose-6-phosphate. The binding for fructose-6-phosphate is calculated to be about 2,000 times tighter in the R conformation than in T. When fructose-6-phosphate binds to any one of the subunits, it appears to cause all four subunits to flip from the T conformation to the R conformation, just as the symmetry model specifies. The allosteric effectors ADP, GDP, and phosphoenolpyruvate do not alter the maximum rate of the reaction but change the dependence of the rate on the fructose-6-phosphate concentration in a manner suggesting that they change the equilibrium constant (L) between the T and R conformations. [Pg.184]

Polymer catalysts showing interactions with the substrate, similar to enzymes, were prepared and their catalytic activities on hydrolysis of polysaccharides were investigated. Kinetical analyses showed that hydrogen bonding and electrostatic interactions played important roles for enhancement of the reactions and that the hydrolysis rates of polysaccharides followed the Michaelis-Menten type kinetics, whereas the hydrolysis of low-molecular-weight analogs proceeded according to second-order kinetics. From thermodynamic analyses, the process of the complex formation in the reaction was characterized by remarkable decreases in enthalpy and entropy. The maximum rate enhancement obtained in the present experiment was fivefold on the basis of the reaction in the presence of sulfuric acid. [Pg.168]

The unit of KM is the same as Cs. When km is equal to Cs, r is equal to one half of rmax according to Eq. (2.11). Therefore, the value of KM is equal to the substrate concentration when the reaction rate is half of the maximum rate rmax (see Figure 2.2). KM is an important kinetic parameter because it characterizes the interaction of an enzyme with a given substrate. [Pg.15]

The Michaelis constant is equal to substrate concentration at which the rate of reaction is equal to one-half the maximum rate. The parameters Km and Vmax characterize the enzymatic reactions that are described by Michaelis-Menten kinetics. Vmax is dependent on total enzyme concentration CET (Equation 11-10), whereas Km is not. [Pg.838]

Traditional steady-state kinetic studies rely on indirect observation of catalysis by monitoring the accumulation of product or consumption of substrate as a consequence of many reaction cycles with a trace of catalyst. Conclusions are limited to inference of the possible pathways for the order of addition of multiple substrates and release of products and quantification of two bulk kinetic parameters, kcat and kcaJKm- The parameter kcat defines the maximum rate of conversion of enzyme-bound substrate to product released into solution, but it cannot be used to establish whether the maximum rate of reaction is limited by enzyme conformational changes, rates of chemical reaction, or rates of product release per se it does, however, set a lower... [Pg.1882]

On many points, near-equilibrium non-equilibrium thermodynamics seemed to be in conflict with that was already known from enzyme kinetics it predicted that reaction rates would go to infinity when the substrate concentration would do so, whereas enzyme catalyzed reactions exhibit a maximum rate. [Pg.2]

When reformulating enzyme kinetics in terms of the dependence of reaction rates on AG, Rottenberg [11,20] did not use the conservation condition as the physical constraint, but rather that either the substrate, or the product concentration would be constant. He found similar appearances for the plots of reaction rates versus the free-energy difference across the reaction. Clearly, in this case the bounds to the maximum forward or reverse reaction rates are not due to the boundary condition chosen, but to saturation characteristics of enzyme kinetics alone. [Pg.8]

Often, PBPK models for toxicokinetics application require special considerations (e.g., volatile toxicants may incur tissue-air partition coefficients and alveolar elimination rates). Partition coefficients are generally obtained by measurement in the laboratory, tissue volume/blood flow data are mostly available from the scientific literature (with allometric scaling from species to species), and biotransformation data are usually obtained from in vivo and in vitro kinetic studies. Biochemical constants for metabolic pathways are captured using the maximum rate of reaction, or Vmax5 and the binding affinity of the particular substrate for the metabolizing enzyme. [Pg.1965]

The initial reaction rate of a catalyzed reaction versus the concentration of the substrate [>q (Eq. (9.39), where K, =k, /ki). The catalytic reaction could be homogeneous, heterogeneous or enzyme catalysis so long as it follows the simple catalytic mechanism. The substrate concentration, [X]. at a tate of half the maximum reaction rate, V, I2, defines in Michaelis-Menten enzyme kinetics. [Pg.329]

The first applications of enzymes in bioanalytical chemistry can be dated back to the middle of nineteenth century, and they were also used for design of first biosensors. These enzymes, which have proved particularly useful in development of biosensors, are able to stabilize the transition state between substrate and its products at the active sites. Enzymes are classified regarding their functions, and the classes of enzymes are relevant to different types of biosensors. The increase in reaction rate that occurs in enzyme-catalyzed reactions may range from several up to e.g. 13 orders of magnitude observed for hydrolysis of urea in the presence of urease. Kinetic properties of enzymes are most commonly expressed by Michaelis constant Ku that corresponds to concentration of substrate required to achieve half of the maximum rate of enzyme-catalyzed reaction. When enzyme is saturated, the reaction rate depends only on the turnover number, i.e., number of substrate molecules reacting per second. [Pg.46]

A third study of the kinetics of lipoamide dehydrogenase has utilized the enzyme isolated from rat liver (9S). At 25°, the temperature of the two previous studies, when dihydrolipoamide was varied at fixed levels of NAD the double reciprocal plots were concave down. At 37° this behavior was not observed. The detailed studies were carried out at the higher temperature. Rates were measured in both directions at pH 8.0, the pH optimum for the reduction of NAD. Under these conditions, initial velocity patterns for the forward and reverse reactions were a series of parallel lines. The Km for NAD was 0.52 mAf, for dihydrolipoamide was 0.49 mAf, for NADH was 0.062 mAf, and for lipoamide was 0.84 mAf. The maximum rate for NAD reduction was 20,700 min- /FAD... [Pg.116]

Then a further increase in the turnover rate of the enzyme (kt) has no net effect on the enzymatic rate. In this situation, the enzyme kinetics become limited by the rate of coordination of the enzyme with the substrate and by the maximum density of enzyme that can be accommodated by the cell surface (Hudson, 1989). [Pg.243]

The enzyme ratio represents the ratio of the initial volumetric activities of the enzymes (dimensions U mL 1). For process conditions, enzyme activity under the actual steady-state reactor conditions is significant, and differs from initial rate conditions as determined by enzyme kinetics. Therefore, the optimum enzyme ratio, implying maximum conversion within minimum residence time, is not 0.5. [Pg.248]

Comparisons of the kinetic coefficients in Eq. (1) obtained from initial rate measurements with alternative substrates have given a considerable amount of information about reaction pathways as well as indications of the molecular basis of specificity (60). This approach, much used for proteolytic enzymes, has been exploited particularly with the alcohol dehydrogenases, which catalyze the oxidation of a variety of primary and secondary alcohols (61). While several other dehydrogenases have been studied in this way, most of the results have been reported only as apparent maximum rates and apparent Km values for the alternative substrate, which restricts the amount of information that can be derived. [Pg.20]


See other pages where Enzyme kinetics maximum rate is mentioned: [Pg.10]    [Pg.175]    [Pg.218]    [Pg.677]    [Pg.99]    [Pg.53]    [Pg.117]    [Pg.374]    [Pg.374]    [Pg.284]    [Pg.305]    [Pg.206]    [Pg.61]    [Pg.87]    [Pg.156]    [Pg.56]    [Pg.241]    [Pg.242]    [Pg.1087]    [Pg.447]    [Pg.249]    [Pg.5]    [Pg.19]   
See also in sourсe #XX -- [ Pg.265 , Pg.267 , Pg.268 , Pg.270 , Pg.271 , Pg.277 , Pg.278 ]




SEARCH



Enzyme kinetic

Enzyme kinetics

Enzyme rate

Kinetic rates

Rate Kinetics

Rate maxima

© 2024 chempedia.info