Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Encounters in the

Knowledge of physical properties of fluids is essential to the process engineer because it enables him to specify, size or verify the operation of equipment in a production unit. The objective of this chapter is to present a collection of methods used in the calculation of physical properties of mixtures encountered in the petroleum industry, different kinds of hydrocarbon components, and some pure compounds. [Pg.85]

The DIPPR is a research organization sponsored by the AlChE (American Institute of Chemical Engineers). Its objective is to develop a thermophysical data bank for the components most frequently encountered in the chemical industry. [Pg.88]

Homogeneity of data. Homogeneous data will be uniform in structure and composition, usually possible to describe with a fixed number of parameters. Homogeneous data is encountered in simple NDT inspection, e.g. quality control in production. Inhomogeneous data will contain various combinations of indications from construction elements, defects and noise sources. An example of inhomogenous data are ultrasonic B-scan images as described in [Hopgood, 1993] or as encountered in the ultrasonic rail-inspection system described later in this paper. [Pg.98]

One example has already been encountered in the form of the binding constants in Table 3.2. These data form one of the first examples of compelling evidence for the involvement of attractive arene -arene interactions in determining the outcome of enantioselective catalysis. These attractive interactions have been frequently invoked as explanations for the observed enantioselectivities of... [Pg.92]

The same sort of situation is encountered in the nitration of the nitrotoluenes. The following diagrams record the observed partial rate... [Pg.184]

Usually no difficulties are encountered in the esterification of thiazole acids. Direct esterification with alcohol and add in the presence of an acid catalyst (7, 61, 62), or prior conversion to the add chloride (6, 63, 64) followed by reaction with an alcohol in basic conditions give good yields. [Pg.525]

Perhaps the most common type of problem encountered in the analytical lab is a quantitative analysis. Examples of typical quantitative analyses include the elemental analysis of a newly synthesized compound, measuring the concentration of glucose in blood, or determining the difference between the bulk and surface concentrations of Cr in steel. Much of the analytical work in clinical, pharmaceutical, environmental, and industrial labs involves developing new methods for determining the concentration of targeted species in complex samples. Most of the examples in this text come from the area of quantitative analysis. [Pg.9]

Liquid-liquid extractions using ammonium pyrrolidine dithiocarbamate (APDC) as a metal chelating agent are commonly encountered in the analysis of metal ions in aqueous samples. The sample and APDC are mixed together, and the resulting metal-ligand complexes are extracted into methyl isobutyl ketone before analysis. [Pg.223]

Particulate gravimetry is commonly encountered in the environmental analysis of water, air, and soil samples. The analysis for suspended solids in water samples, for example, is accomplished by filtering an appropriate volume of a well-mixed sample through a glass fiber filter and drying the filter to constant weight at 103-105 °C. [Pg.264]

Deviations from the Avrami equation are frequently encountered in the long time limit of the data. This is generally attributed to secondary nucleation occurring at irregularities on the surface of crystals formed earlier. [Pg.234]

Favorable and unfavorable equihbrium isotherms are normally defined, as in Figure 11, with respect to an increase in sorbate concentration. This is, of course, appropriate for an adsorption process, but if one is considering regeneration of a saturated column (desorption), the situation is reversed. An isotherm which is favorable for adsorption is unfavorable for desorption and vice versa. In most adsorption processes the adsorbent is selected to provide a favorable adsorption isotherm, so the adsorption step shows constant pattern behavior and proportionate pattern behavior is encountered in the desorption step. [Pg.263]

Potassium Chloride. The principal ore encountered in the U.S. and Canadian mines is sylvinite [12174-64-0] a mechanical mixture of KCl and NaCl. Three beneficiation methods used for producing fertilizer grades of KCl ate thermal dissolution, heavy media separation, and flotation (qv). The choice of method depends on factors such as grade and type of ore, local energy sources, amount of clay present, and local fuel and water availabiUty and costs. [Pg.232]

AH corrosion inhibitors in use as of this writing are oil-soluble surfactants (qv) which consist of a hydrophobic hydrocarbon backbone and a hydrophilic functional group. Oil-soluble surfactant-type additives were first used in 1946 by the Sinclair Oil Co. (38). Most corrosion inhibitors are carboxyhc acids (qv), amines, or amine salts (39), depending on the types of water bottoms encountered in the whole distribution system. The wrong choice of inhibitors can lead to unwanted reactions. Eor instance, use of an acidic corrosion inhibitor when the water bottoms are caustic can result in the formation of insoluble salts that can plug filters in the distribution system or in customers vehicles. Because these additives form a strongly adsorbed impervious film at the metal Hquid interface, low Hquid concentrations are usually adequate. Concentrations typically range up to 5 ppm. In many situations, pipeline companies add their own corrosion inhibitors on top of that added by refiners. [Pg.186]

Wood Pulping. The system Mg(OH)2 S02 H20 is also used in acid bisulfite pulping. Compared to a calcium-based system which is not as amenable to regeneration of the pulping bisulfite (87), fewer technical problems are encountered in the digesters, evaporators, or recovery boiler of the Mg-based process. In the presence of excess SO2, bisulfite forms in a 43% MgSO solution, at 25°C and 101.3 kPa (1 atm) SO2 pressure, to increase MgSO solubihty. [Pg.359]

Fluid mixing is a unit operation carried out to homogenize fluids in terms of concentration of components, physical properties, and temperature, and create dispersions of mutually insoluble phases. It is frequently encountered in the process industry using various physical operations and mass-transfer/reaction systems (Table 1). These industries include petroleum (qv), chemical, food, pharmaceutical, paper (qv), and mining. The fundamental mechanism of this most common industrial operation involves physical movement of material between various parts of the whole mass (see Supplement). This is achieved by transmitting mechanical energy to force the fluid motion. [Pg.419]

R. E. Fleming, M Compilation of Physical and Chemical Properties of Materials and Streams Encountered in the Chemical Processing Department, HW-57386 (unclassified), U.S. Dept, of Energy, Washington, D.C., 1958. [Pg.208]

Scrubbing andDesliming. Sylvinite ores in North America contain 1—6 wt % water-insoluble clays. A significant portion of these clays is less than 0.002 mm in diameter. If not removed or controUed in some manner, clay bodies that are dispersed in the flotation solution, ie, brine saturated with KCl and NaCl, absorb the amine coUector, which is added to effect flotation separation, and the coUector is rendered ineffective. Clay is the most troublesome impurity encountered in the processing of sylvinite ore. [Pg.525]

Scrap that is unsuitable for recycling into products by the primary aluminum producers is used in the secondary aluminum industry for castings that have modest property requirements. Oxide formation and dross buildup are encountered in the secondary aluminum industry, and fluxes are employed to assist in the collection of dross and removal of inclusions and gas. Such fluxes are usually mixtures of sodium and potassium chlorides. Fumes and residues from these fluxes and treatment of dross are problems of environmental and economic importance, and efforts are made to reclaim both flux and metal values in the dross. [Pg.124]


See other pages where Encounters in the is mentioned: [Pg.424]    [Pg.283]    [Pg.671]    [Pg.686]    [Pg.1190]    [Pg.1297]    [Pg.704]    [Pg.352]    [Pg.97]    [Pg.169]    [Pg.107]    [Pg.135]    [Pg.68]    [Pg.331]    [Pg.206]    [Pg.168]    [Pg.425]    [Pg.432]    [Pg.28]    [Pg.112]    [Pg.187]    [Pg.311]    [Pg.458]    [Pg.113]    [Pg.192]    [Pg.200]    [Pg.397]    [Pg.175]    [Pg.266]    [Pg.270]    [Pg.537]   


SEARCH



Encounter

Encounter in solution the solvent cage

Nitration at the encounter rate in inert organic solvents

Nitrations at the encounter rate in aqueous sulphuric and

© 2024 chempedia.info