Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective Diels-Alder

Because the Corey synthesis has been extensively used in prostaglandin research, improvements on the various steps in the procedure have been made. These variations include improved procedures for the preparation of norbomenone (24), alternative methods for the resolution of acid (26), stereoselective preparations of (26), improved procedures for the deiodination of iodolactone (27), alternative methods for the synthesis of Corey aldehyde (29) or its equivalent, and improved procedures for the stereoselective reduction of enone (30) (108—168). For example, a catalytic enantioselective Diels-Alder reaction has been used in a highly efficient synthesis of key intermediate (24) in 92% ee (169). [Pg.158]

Despite the structural relationship between ginkgolide B and bilobalide, retrosynthetic analysis of the latter produced a totally different collection of sequences. A successful synthesis of bilobalide was implemented using a plan which depended on stereochemical and FG-based strategies. A process for enantioselective synthesis was based on an initial enantioselective Diels-Alder step in combination with a novel annulation method. [Pg.227]

In most of the successful Diels-Alder reactions reported, dienes containing no heteroatom have been employed, and enantioselective Diels-Alder reactions of multiply heteroatom-substituted dienes, e.g. Danishefsky s diene, are rare, despite their tremendous potential usefulness in complex molecular synthesis. Rawal and coworkers have reported that the Cr(III)-salen complex 15 is a suitable catalyst for the reaction of a-substituted a,/ -unsubstituted aldehydes with l-amino-3-siloxy dienes [21] (Scheme 1.28, Table 1.12). The counter-ion of the catalyst is important and good results are obtained in the reaction using the catalyst paired with the SbFg anion. [Pg.21]

Several highly enantioselective Diels-Alder reactions are known for which the di-enophile does not fit any of the above classes. Corey and coworkers applied the chiral aluminum reagent 36 with a C2-symmetric stilbenediamine moiety (videsu-pra) to the Diels-Alder reaction of maleimides as dienophiles [54] (Scheme 1.68). In most asymmetric Diels-Alder reactions the reactants are usually relatively simple dienes such as cyclopentadiene or monosubstituted butadienes, and unsym-... [Pg.43]

To achieve catalytic enantioselective aza Diels-Alder reactions, choice of metal is very important. It has been shown that lanthanide triflates are excellent catalysts for achiral aza Diels-Alder reactions [5]. Although stoichiometric amounts of Lewis acids are often required, a small amount of the triflate effectively catalyzes the reactions. On the basis of these findings chiral lanthanides were used in catalytic asymmetric aza Diels-Alder reactions. The chiral lanthanide Lewis acids were first developed to realize highly enantioselective Diels-Alder reactions of 2-oxazolidin-l-one with dienes [6]. [Pg.188]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

The use of catalysts for a Diels-Alder reaction is often not necessary, since in many cases the product is obtained in high yield in a reasonable reaction time. In order to increase the regioselectivity and stereoselectivity (e.g. to obtain a particular endo- or exo-product), Lewis acids as catalysts (e.g. TiCU, AICI3, BF3-etherate) have been successfully employed." The usefulness of strong Lewis acids as catalysts may however be limited, because they may also catalyze polymerization reactions of the reactants. Chiral Lewis acid catalysts are used for catalytic enantioselective Diels-Alder reactions. ... [Pg.93]

An enantioselective Diels-Alder reaction between the prochiral 2H-aziridine 62 and cydopentadiene 63 (Scheme 3.21) has also been reported [68]. Through the use of (S)-BINOL 64 together with AlMe3, aziridine-2-carboxylate 65 was obtained in 50% ee and 41 % isolated yield [68],... [Pg.81]

Carmona D., Pilar Lamata M., Oro, L. A. Recent Advances in Homogeneous Enantioselective Diels-Alder Reactions Catalyzed by Chiral Transition-Metal Complexes Coord. Chem. Rev. 2000 200-202 717-772... [Pg.302]

Enders D., Meyer O. Diastereo- and Enantioselective Diels-Alder Reaction of 2-Amino-1,3-Dienes Liebigs Ann. 1996 1023-1035... [Pg.314]

Figure 3.6 Enantioselective Diels-Alder reaction catalyzed by BSA and a Cu-phthalocyanin [26],... Figure 3.6 Enantioselective Diels-Alder reaction catalyzed by BSA and a Cu-phthalocyanin [26],...
Similar enantioselective Diels-Alder reactions between cyclopentadiene and a,p-acetylenic aldehydes catalyzed by a chiral snper Lewis acid were reported by Corey and Lee [58],... [Pg.37]

Tang synthesized pseudo-Cs-symmetric tris(oxazofines) in two steps from the corresponding triester and the amino alcohol [78]. They tested them as copper ligand for enantioselective Diels-Alder reaction [79]. [Pg.117]

Copper-complexes prepared with other type of N-chelating ligands have been also prepared and evaluated as catalysts for the Diels-Alder reaction. Eng-berts et al. [103] studied enantioselective Diels-Alder reaction of 3-phenyl-l-(2-pyridyl)-2-propen-l-one with cyclopentadiene in water (Scheme 39). By using coordinating chiral, commercially available a-amino-adds and their derivatives with copper salts as catalysts, they obtained the desired product with yields generally exceeding 90%. With L-abrine (72 in Scheme 39) as chiral moiety, an enantiomeric excess of 74% could be achieved. Moreover, the catalyst solution was reused with no loss of enantioselectivity. [Pg.124]

Fujisawa et al. [Ill] have reported that the magnesiiun complex prepared from chiral 2-[2-[(tolylsulfonyl)amino]phenyl]-4-phenyl-l,3-oxazoline 81 and methyl-magnesium iodide was efficient, in a stoechiometric amount, for promoting the enantioselective Diels-Alder reaction of 3-alkenoyl-l,3-oxazohdin-2-one with cyclopentadiene (Scheme 45) leading exclusively to the endo adducts in up to 92% ee. The use of 10 mol% of the complex led to an important decrease in enantioselectivity of the product (51% ee). [Pg.128]

In 2005, Carretero et al. reported a second example of chiral catalysts based on S/P-coordination employed in the catalysis of the enantioselective Diels-Alder reaction, namely palladium complexes of chiral planar l-phosphino-2-sulfenylferrocenes (Fesulphos). This new family of chiral ligands afforded, in the presence of PdCl2, high enantioselectivities of up to 95% ee, in the asymmetric Diels-Alder reaction of cyclopentadiene with A-acryloyl-l,3-oxazolidin-2-one (Scheme 5.17). The S/P-bidentate character of the Fesulphos ligands has been proved by X-ray diffraction analysis of several metal complexes. When the reaction was performed in the presence of the corresponding copper-chelates, a lower and opposite enantioselectivity was obtained. This difference of results was explained by the geometry of the palladium (square-planar) and copper (tetrahedral) complexes. [Pg.198]

In 1995, these authors applied this methodology to the first total synthesis of the biosynthetically and unusual marine natural products, gracilins B and Thus, the key step of this synthesis was the enantioselective Diels-Alder reaction of 2-((trimethylsilyl)methyl)-butadiene with A-(2-iert-butylphenyl)maleimide in... [Pg.200]

On the other hand, several examples of chiral sulfonamides derived from ehiral a-amino acids have been successfully employed as ligands for enantio-seleetive Diels-Alder reactions. Thus, Yamamoto and Takasu have easily prepared new chiral Lewis acids from borane and sulfonamides of various ehiral a-amino acids, which were further studied for their abilities to promote the enantioselective Diels-Alder reaction between methacrolein and 2,3-dime-thyl-1,3-butadiene. Since 2,4,6-triisopropylbenzenesulfonamide of a-amino-butyric acid gave the highest enantioseleetivity, this eatalyst was applied to the... [Pg.202]

In the same area, a (5)-tryptophan-derived oxazaborolidine including a p-tolylsulfonylamide function has been used by Corey et al. to catalyse the enantioselective Diels-Alder reaction between 2-bromoacrolein and cyclo-pentadiene to form the corresponding chiral product with an unprecedented high (> 99% ee) enantioselectivity (Scheme 5.27)." This highly efficient methodology was extended to various 2-substituted acroleins and dienes such as isoprene and furan. In addition, it was applied to develop a highly efficient total synthesis of the potent antiulcer substance, cassiol, as depicted in Scheme 5.21... [Pg.204]

Recently, catalytic asymmetric Diels-Alder reactions have been investigated. Yamamoto reported a Bronsted-acid-assistcd chiral (BLA) Lewis acid, prepared from (R)-3-(2-hydroxy-3-phcnylphenyl)-2,2 -dihydroxy-1,1 -binaphthyl and 3,5A(trifluoromethy I) - be nzeneboronic acid, that is effective in catalyzing the enantioselective Diels-Alder reaction between a,(3-enals and various dienes.62 The interesting aspect is the role of water, THF, and MS 4A in the preparation of the catalyst (Eq. 12.19). To prevent the trimerization of the boronic acid during the preparation of the catalyst, the chiral triol and the boronic acid were mixed under aqueous conditions and then dried. Using the catalyst prepared in this manner, a 99% ee was obtained in the Diels-Alder reaction... [Pg.387]

In catalytic enantioselective Diels-Alder reactions, Mg11 catalysts bearing chiral auxiliaries, such as chiral bidentate ligands containing oxazoline moieties,27-29 chiral diamines,30 and... [Pg.401]

Enantioselective Diels-Alder reactions proceed smoothly in the presence of a chiral Sc catalyst, prepared in situ from Sc(OTf)3, R)- I )-l,l -bi-2-napluhol [(R)-BINOL], and a tertiary amine in dichloromethane.58 The catalyst is also effective in Diels-Alder reactions of an acrylic acid derivative with dienes (Scheme 14). [Pg.404]

This procedure describes the preparation and application of an effective chiral catalyst for the enantioselective Diels-Alder reaction.11 The catalyst is derived from optically active 1,2-diphenylethylenediamine, the preparation of which (either antipode) was described in the preceding procedure. The aluminum-based Lewis acid also catalyzes the cycloaddition of crotonoyl oxazolidinones with cyclopentadiene,11 and acryloyl derivatives with benzyloxymethylene-cyclopentadiene. The latter reaction leads to optically pure intermediates for synthesis of prostaglandins.11... [Pg.19]

Stable aryl boronates derived from tartaric acid catalyze the reaction of cyclo-pentadiene with vinyl aldehyde with high selectivity. Chiral acyloxy borane (CAB), derived from tartaric acid, has proved to be a very powerful catalyst for the enantioselective Diels-Alder reaction and hetero Diels-Alder reaction. Scheme 5 23 presents an example of a CAB 73 (R = H) catalyzed Diels-Alder reaction of a-bromo-a,/i-cnal 74 with cyclopentadiene. The reaction product is another important intermediate for prostaglandin synthesis. In the presence of... [Pg.283]

TABLE 5-2. Enantioselective Diels-Alder Reaction of Various a-Substituted a,/ -Enals with Cyclopentadiene Catalyzed by (R)-BLA 76a... [Pg.286]

Besides the methods discussed in Chapter 2, some quaternary stereocenters can also be conveniently constructed through the enantioselective Diels-Alder reaction of the 2-substituted acroleins 75 and 128-130. [Pg.301]

Collins and co-workers have performed studies in the area of catalytic enantioselective Diels—Alder reactions, in which ansa-metallocenes (107, Eq. 6.17) were utilized as chiral catalysts [100], The cycloadditions were typically efficient (-90% yield), but proceeded with modest stereoselectivities (26—52% ee). The group IV metal catalyst used in the asymmetric Diels—Alder reaction was the cationic zirconocene complex (ebthi)Zr(OtBu)-THF (106, Eq. 6.17). Treatment of the dimethylzirconocene [101] 106 with one equivalent of t-butanol, followed by protonation with one equivalent of HEt3N -BPh4, resulted in the formation of the requisite chiral cationic complex (107),... [Pg.212]


See other pages where Enantioselective Diels-Alder is mentioned: [Pg.19]    [Pg.15]    [Pg.18]    [Pg.311]    [Pg.70]    [Pg.36]    [Pg.116]    [Pg.121]    [Pg.130]    [Pg.118]    [Pg.187]    [Pg.188]    [Pg.193]    [Pg.197]    [Pg.199]    [Pg.205]    [Pg.46]    [Pg.174]    [Pg.277]    [Pg.286]    [Pg.323]    [Pg.324]    [Pg.215]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



© 2024 chempedia.info