Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsions interfacial tension effects

Details are given of an emulsion polymerisation that involves an encapsulation of a nonsolvent hydrocarbon for the polymer being formed. The phase separation of PS within a styrene-isooctane dispersion was modelled with the Flory-Huggins theory. The encapsulation is discussed in terms of interaction parameters, transport processes, polymer molecular weight, and interfacial tension effects. 38 refs. [Pg.80]

Rosen and Dahanakake [3] explore the properties of a large number of industrial surfactants with respect to their performance in industrial processes and formulations and lead the readers to a conclusion that surfactant performance depends on measurable and tangible properties such as surface and interfacial tensions, effectiveness of adsorption, molecular surface area, efficiency of adsorption, wetting, spreading coefficients, CMC values, Krafft and cloud points, and solubilization capacity, among others. Such an approach seems to be beneficial and relevant for rather simple diluted manufactured emulsions, foams, or dispersions in which the number of components is limited and the measured parameters reflect the product s characteristics. However, when dealing with more concentrated and complex systems such as natural and processed foods in which several different types of components are present, it seems that simplification is... [Pg.271]

Thus, in the relatively simple case of oil in water emulsions, where a surface active agent such as a soap is used as the emulsifying agent, it is known that the soap adsorbed on the surface of the oil particles decreases the interfacial tension, thus stabilizing the emulsion. The adsorbed soap ions also give a net electrostatic charge to the dispersed oil droplets, serving to repel other oil droplets, with the net effect that flocculation is hindered (and stability is increased). It is even possible to measure the amount of adsorbed soap ions and to calculate the values of the surface potential. [Pg.70]

Closely akin to the subject of emulsions is the field of foams, mentioned only in passing. The two fields are similar, in that their properties both depend on surface effects, changes in interfacial tension, electrolyte composition, and manner of preparation. [Pg.71]

Water-in-oil macroemulsions have been proposed as a method for producing viscous drive fluids that can maintain effective mobility control while displacing moderately viscous oils. For example, the use of water-in-oil and oil-in-water macroemulsions have been evaluated as drive fluids to improve oil recovery of viscous oils. Such emulsions have been created by addition of sodium hydroxide to acidic crude oils from Canada and Venezuela. In this study, the emulsions were stabilized by soap films created by saponification of acidic hydrocarbon components in the crude oil by sodium hydroxide. These soap films reduced the oil/water interfacial tension, acting as surfactants to stabilize the water-in-oil emulsion. It is well known, therefore, that the stability of such emulsions substantially depends on the use of sodium hydroxide (i.e., caustic) for producing a soap film to reduce the oil/water interfacial tension. [Pg.202]

Our goal is to develop a property-performance relationship for different types of demulsifiers. The important interfacial properties governing water-in-oil emulsion stability are shear viscosity, dynamic tension and dilational elasticity. We have studied the relative importance of these parameters in demulsification. In this paper, some of the results of our study are presented. In particular, we have found that to be effective, a demulsifier must lower the dynamic interfacial tension gradient and its ability to do so depends on the rate of unclustering of the ethylene oxide groups at the oil-water interface. [Pg.367]

The rheological properties of a fluid interface may be characterized by four parameters surface shear viscosity and elasticity, and surface dilational viscosity and elasticity. When polymer monolayers are present at such interfaces, viscoelastic behavior has been observed (1,2), but theoretical progress has been slow. The adsorption of amphiphilic polymers at the interface in liquid emulsions stabilizes the particles mainly through osmotic pressure developed upon close approach. This has become known as steric stabilization (3,4.5). In this paper, the dynamic behavior of amphiphilic, hydrophobically modified hydroxyethyl celluloses (HM-HEC), was studied. In previous studies HM-HEC s were found to greatly reduce liquid/liquid interfacial tensions even at very low polymer concentrations, and were extremely effective emulsifiers for organic liquids in water (6). [Pg.185]

Microbes were frequently found to synthesise surface-active molecules in order to mobilise hydrophobic organic substrates. These biosurfactants, which are either excreted by the producing organisms or remain bound to their cell surfaces, are composed of a hydrophilic part making them soluble in water and a lipophilic part making them accumulate at interfaces. With respect to their physical effects, one can distinguish two types of biosurfactants firstly, molecules that drastically reduce the surface and interfacial tensions of gas-liquid, liquid-liquid and liquid-solid systems, and, secondly, compounds that stabilise emulsions of nonaqueous phase liquids in water, often also referred to as bioemulsifiers. The former molecules are typically low-molar-mass... [Pg.423]

The model system used by Mabille et al. [149, 150] was a set of monodisperse dilute (2.5 wt% of dispersed oil) emulsions of identical composition, whose mean size ranged from 4 p.m to 11 p.m. A sudden shear of 500 s was applied by means of a strain-controlled rheometer for durations ranging from 1 to 1500 s. All the resulting emulsions were also monodisperse. At such low oil droplet fraction, the emulsion viscosity was mainly determined by that of the continuous phase (it was checked that the droplet size had no effect on the emulsion viscosity). The viscosity ratio p = t]a/t]c = 0.4 and the interfacial tension yi t = 6 mN/m remained constant. [Pg.21]

Pons et al. have studied the effects of temperature, volume fraction, oil-to-surfactant ratio and salt concentration of the aqueous phase of w/o HIPEs on a number of rheological properties. The yield stress [10] was found to increase with increasing NaCl concentration, at room temperature. This was attributed to an increase in rigidity of films between adjacent droplets. For salt-free emulsions, the yield stress increases with increasing temperature, due to the increase in interfacial tension. However, for emulsions containing salt, the yield stress more or less reaches a plateau at higher temperatures, after addition of only 1.5% NaCl. [Pg.180]

Increasing temperature has the effect of decreasing emulsion stability this has been demonstrated by Kunieda et al. [11,14], among others, and is due to the increase of the rate of coalescence of the dispersed phase droplets with increasing thermal energy. Pons et al. [100] also noted that a temperature increase caused an increase in average droplet size due to increasing interfacial tension. [Pg.186]

Emulsification is a stabilizing effect of proteins a lowering of the interfacial tension between immiscible components that allow the formation of a protective layer around oil droplets. The inherent properties of proteins or their molecular conformation, denaturation, aggregation, pH solubility, and susceptibility to divalent cations affect their performance in model and commercial emulsion systems. Emulsion capacity profiles of proteins closely resemble protein solubility curves and thus the factors that influence solubility properties (protein composition and structure, methods and conditions of extraction, processing, and storage) or treatments used to modify protein character also influence emulsifying properties. [Pg.340]

Any surfactant adsorption will lower the oil-water interfacial tension, but these calculations show that effective oil recovery depends on virtually eliminating y. That microemulsion formulations are pertinent to this may be seen by reexamining Figure 8.11. Whether we look at microemulsions from the emulsion or the micellar perspective, we conclude that the oil-water interfacial free energy must be very low in these systems. From the emulsion perspective, we are led to this conclusion from the spontaneous formation and stability of microemulsions. From a micellar point of view, a pseudophase is close to an embryo phase and, as such, has no meaningful y value. [Pg.394]

Interfacial tension analysis may be used to study the interaction of emulsifiers and milk protein at the oil-water interface of whippable emulsions. The interfacial activity of proteins is affected only slightly by temperature changes. In general, emulsifiers can reduce interfacial tension much more than protein, and this effect is especially pronounced at low temperatures. [Pg.77]

More commonly, demulsifiers are surface-active substances (surfactants) that have the ability to destabilize emulsions. This involves reducing the interfacial tension at the emulsion interface, often by neutralizing the effect of other surfactants that are stabilizing the emulsion. An example is antagonistic action - the addition of an O/W promoter to break a W/O emulsion (see sensitization in Section 5.4). Mikula... [Pg.216]

The high molar mass species reside mostly in the aqueous phase with a number of peptide groups residing in the oil/water interface [293]. Although these latter surfactants are less effective at reducing interfacial tension, they can form a viscoelastic membrane-like film around oil droplets or air bubbles. These tend to be used in the preparation of, for example, O/W emulsions. These trends are by no means exclusive, mixtures are the norm and competitive adsorption is prevalent. Caseinate, one of the most commonly used surfactants in the food industry, is itself a mixture of interacting proteins of varying surface activity [814],... [Pg.303]

Generally speaking, for a stable emulsion a densely packed surfactant film is necessary at the interfaces of the water and the oil phase in order to reduce the interfacial tension to a minimum. To this end, the solubility of the surfactant must not be too high in both phases since, if it is increased, the interfacial activity is reduced and the stability of an emulsion breaks down. This process either can be undesirable or can be used specifically to separate an emulsion. The removal of surfactant from the interface can, for example, be achieved by raising the temperature. By this measure, the water solubility of ionic surfactants is increased, the water solubility of non-ionic emulsifiers is decreased whereas its solubility in oil increases. Thus, the packing density of the interfacial film is changed and this can result in a destabilisation of the emulsion. The same effect can happen in the presence of electrolyte which decreases the water solubility mainly of ionic surfactants due to the compression of the electric double layer the emulsion is salted out. Also, other processes can remove surfactant from the water-oil interface - for instance a precipitation of anionic surfactant by cationic surfactant or condensing counterions. [Pg.76]


See other pages where Emulsions interfacial tension effects is mentioned: [Pg.411]    [Pg.307]    [Pg.290]    [Pg.591]    [Pg.532]    [Pg.126]    [Pg.370]    [Pg.370]    [Pg.16]    [Pg.26]    [Pg.79]    [Pg.88]    [Pg.144]    [Pg.78]    [Pg.460]    [Pg.461]    [Pg.485]    [Pg.418]    [Pg.206]    [Pg.216]    [Pg.135]    [Pg.326]    [Pg.247]    [Pg.71]    [Pg.89]    [Pg.205]    [Pg.208]    [Pg.467]    [Pg.512]    [Pg.516]    [Pg.179]   
See also in sourсe #XX -- [ Pg.518 ]




SEARCH



Effect interfacial tension

Effective Interfacial Tension

Effective tension

Emulsion effect

Interfacial effective

Interfacial effects

Interfacial tension

Interfacial tension emulsions

© 2024 chempedia.info