Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric oxide emissions

Air pollution can be considered to have three components sources, transport and transformations in the atmosphere, and receptors. The source emits airborne substances that, when released, are transported through the atmosphere. Some of the substances interact with sunlight or chemical species in the atmosphere and are transformed. Pollutants that are emitted directiy to the atmosphere are called primary pollutants pollutants that are formed in the atmosphere as a result of transformations are called secondary pollutants. The reactants that undergo transformation are referred to as precursors. An example of a secondary pollutant is O, and its precursors are NMHC and nitrogen oxides, NO, a combination of nitric oxide [10102-43-9] NO, and NO2. The receptor is the person, animal, plant, material, or ecosystem affected by the emissions. [Pg.366]

Nitric oxide and OF2 inflame on contact emission and absorption spectra of the flame have been studied (24). Oxygen difluoride oxidizes SO2 to SO, but under the influence of uv kradiation it forms sulfuryl fluoride [2699-79-8] SO2F2, and pyrosulfuryl fluoride [37240-33-8] S20 F2 (25). Photolysis of SO —OF2 mixtures yields the peroxy compound FSO2OOF [13997-94-9] (25,26). [Pg.220]

Chemiluminescence. Chemiluminescence (262—265) is the emission of light duting an exothermic chemical reaction, generaUy as fluorescence. It often occurs ia oxidation processes, and enzyme-mediated bioluminescence has important analytical appHcations (241,262). Chemiluminescence analysis is highly specific and can reach ppb detection limits with relatively simple iastmmentation. Nitric oxide has been so analyzed from reaction with ozone (266—268), and ozone can be detected by the emission at 585 nm from reaction with ethylene. [Pg.320]

In contrast to carbon monoxide, small hydrocarbon molecules and soot that result from incomplete conversion of the hydrocarbon fuels, nitric oxide and nitrogen dioxide, are noxious emissions that result from the oxidizer—air. However, fuel components that contain nitrogen may also contribute, in a lesser way, to the formation of the oxides of nitrogen. [Pg.274]

Nitrogen Dioxide (NO2) Is a major pollutant originating from natural and man-made sources. It has been estimated that a total of about 150 million tons of NOx are emitted to the atmosphere each year, of which about 50% results from man-made sources (21). In urban areas, man-made emissions dominate, producing elevated ambient levels. Worldwide, fossil-fuel combustion accounts for about 75% of man-made NOx emissions, which Is divided equally between stationary sources, such as power plants, and mobile sources. These high temperature combustion processes emit the primary pollutant nitric oxide (NO), which Is subsequently transformed to the secondary pollutant NO2 through photochemical oxidation. [Pg.174]

Based solely on this relationship, it has been predicted that the ozone concentration should be about 2 pphm at solar noon in the United States. Indeed [7], in unpolluted environments, ozone concentrations are usually in the range of 2-5 pphm. However, in polluted urban areas, ozone concentrations can be as high as 50 pphm. Peroxy radicals formed from hydrocarbon emissions cause this enhanced ozone concentration. These radicals oxidize nitric oxide to nitrogen dioxide, thereby shifting the above steady-state relationship to higher ozone levels. [Pg.470]

Here a chemical reaction produces a molecule with electrons in an excited state. Upon decay to the ground state the liberated radiation is detected. One such example is the reaction between ozone and nitric oxide to form nitrogen dioxide emitting radiation in the near infra-red in the 0.5-3/t region. The technique flnds use for measuring nitric oxide in ambient air or stack emissions. [Pg.309]

Stohl A, E Williams, G Wotawa, H Kromp-Kolb (1996) A European inventory of soil nitric oxide emissions and the effect of these emissions on the photochemical formation of ozone. Atmos Environ 30 3741-3755. [Pg.161]

Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., and Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxide. Bioscience 50, 667-680. [Pg.81]

The reactions that occur to auto-exhaust emissions when exposed to plasma include oxidation of HCs, carbon monoxide, and partially diesel PM also. Nitric oxide (NO) can be oxidized by plasma to N02. Plasma alone, due to its oxidizing character, is not a viable NO control method. However, combinations of plasma with catalysts, referred to as plasma-assisted catalysts or simply plasma catalysts , have been suggested for NO reduction. The plasma is believed to show potential to improve catalyst selectivity and removal efficiency. Current state-of-the-art plasma catalysts have efficiencies comparable to those of active DeNO systems, removing about 50% of NO at a fuel economy penalty of less than 5% [85],... [Pg.16]

Presently, there is a general consensus that heterogeneous catalytic processes play an important role in environmental issues regarding their high selectivity towards the removal of undesired side products, such as atmospheric pollutants, in comparison with that obtained from non-catalysed processes. However, such a benefit could be disputed in the future with the implementation of severe restrictions on standard emission of those atmospheric pollutants, particularly nitric oxide, which is a very challenging aspect. [Pg.418]

The book focuses on three main themes catalyst preparation and activation, reaction mechanism, and process-related topics. A panel of expert contributors discusses synthesis of catalysts, carbon nanomaterials, nitric oxide calcinations, the influence of carbon, catalytic performance issues, chelating agents, and Cu and alkali promoters. They also explore Co/silica catalysts, thermodynamic control, the Two Alpha model, co-feeding experiments, internal diffusion limitations. Fe-LTFT selectivity, and the effect of co-fed water. Lastly, the book examines cross-flow filtration, kinetic studies, reduction of CO emissions, syncrude, and low-temperature water-gas shift. [Pg.407]

Figure 2 shows the nitric oxide cycle resulting in the emission of NO and pollutants arising from it at atmospheric temperatures8. [Pg.1174]

Concern about emissions from power plant sources has raised the level of interest in certain products whose concentrations are much less than 1%, even though such concentrations do not affect the temperature even in a minute way. The major pollutant of concern in this regard is nitric oxide (NO). To make an estimate of the amount of NO found in a system at equilibrium, one would use the equilibrium reaction of formation of NO... [Pg.18]

Nitric oxide is the primary nitrogen oxide emitted from most combustion sources. The role of nitrogen dioxide in photochemical smog has already been discussed. Stringent emission regulations have made it necessary to examine all possible sources of NO. The presence of N20 under certain circumstances could, as mentioned, lead to the formation of NO. In the following subsections the reaction mechanisms of the three nitrogen oxides of concern are examined. [Pg.420]

FIGURE 8.8 Nitric oxide emissions from an oil-fired laboratory furnace (from Martin and Berkau [18]). [Pg.431]

PROCESSES GOVERNING NITROUS AND NITRIC OXIDE EMISSIONS EROM RICE... [Pg.249]

Emissions of nitric and nitrous oxides are the result of microbial nitrification and denitrification in soils, controlled principally by soil water and mineral N contents, labile organic carbon, and temperature. Nitric oxide is a direct intermediate of both nitrification... [Pg.249]

Diesel emissions contain low concentrations of carbon monoxide and hydrocarbons. The major problem with diesel emissions are nitric oxides and particles as these are the most difficnlt to rednce. [Pg.87]

The data reviewed in Chapter 4 support the second point of view. Measurements in remote areas of the Northern Hemisphere, when compared with those in the lower 48 states of the United States, support the contention that man-made sources are involved in cases where the standard is exceeded. Further measurements are needed to establish this contention with more certainty. Some of the difficulties involved in such studies become apparent when it is noted that the effect of pollution— particularly nitric oxide emission—is to reduce ozone concentrations locally. [Pg.4]

Bilger has documented ozone and other oxidant measurements in Australia and compared them with those in other cities. Table 4-6 shows the portion of hours during which threshold concentrations were exceeded in Sydney in 1971, 1972, and 1973. Low concentrations were recorded before 1970, probably because of the proximity to nitric oxide emission sources in the central portion of the city. It is also noteworthy that, despite the calm conditions and strong inversion in the winter months (in the Southern Hemisphere), high-oxidant days were relatively infrequent. Figure 4-8 outlines this seasonal variation in oxidant concentration. In Melbourne, Australia, however, a high-ozone episode was observed during... [Pg.138]

The time-series analysis results of Merz et were expressed in first-order empirical formulas for the most part. Forecasting expressions were developed for total oxidant, carbon monoxide, nitric oxide, and hydrocarbon. Fitting correlation coefficients varied from 0.547 to 0.659. As might be expected, the best results were obtained for the primary pollutants carbon monoxide and nitric oxide, and the lowest correlation was for oxidant. This model relates one pollutant to another, but does not relate emission to air quality. For primary pollutants, the model expresses the concentrations as a function of time. [Pg.225]

When a monitoring site is selected, it is important to take account of environmental features. For example, ozone measured in or near automotive traffic can drop to 50% of the areawide value, owing to reaction with the nitric oxide firom exhaust emission. Ozone measured 7.5 m from a large tree in green leaf can drop to 70% of the areawide value, but it may also be reduced within 1 m of shrubs and grass. Paint, asphalt, concrete, dry soil, and dead vegetation are not as reactive and so have less effect. Peak ozone values observed in sunlit windscreened. [Pg.247]

The technol( for the routine measurement of the nitrogen oxides (nitrogen dioxide and nitric oxide) is fairly well advanced. The epa is on the verge of officially proposing that chemiluminescence produced by the reaction of nitric oxide with ozone be the reference method for nitrogen dioxide.This method is even more suitable for nitric oxide. Because no national air quality standard has been promulgated for nitric oxide, no reference method will be specified. However, its measurement in the atmosphere is crucial for establishing the relation of its emission to the formation of atmospheric ozone and other photochemical oxidants. [Pg.269]


See other pages where Nitric oxide emissions is mentioned: [Pg.124]    [Pg.124]    [Pg.244]    [Pg.535]    [Pg.74]    [Pg.36]    [Pg.23]    [Pg.24]    [Pg.66]    [Pg.274]    [Pg.66]    [Pg.71]    [Pg.186]    [Pg.128]    [Pg.6]    [Pg.148]    [Pg.105]    [Pg.409]    [Pg.274]    [Pg.15]    [Pg.166]    [Pg.171]    [Pg.210]    [Pg.211]    [Pg.211]    [Pg.215]    [Pg.223]   


SEARCH



© 2024 chempedia.info