Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrosprays advantages

Ions formed in an electrospray or similar ion source are said to be thermolized, which is to say that their distribution of internal energies is close to that expected for their normal room-temperature ground state. Such ions have little or no excess of internal energy and exhibit no tendency to fragment. This characteristic is an enormous advantage for obtaining molecular mass information from the stable molecular ions, although there is a lack of structural information. [Pg.167]

For off-bead analysis, coupling between chromatographic separation and mass spectrometric detection has proven especially powerful. The combination between high performance liquid chromatography (HPLC) and electrospray ionisation mass spectrometry has the advantage that purity of product mixtures can be coupled on-line with the product identification. [Pg.383]

The ability to produce ions using electrospray ionization is more reliant on the solution chemistry of the analyte than the other ionization techniques described and this feature may be used by the analyst to advantage. It may also confuse the unwary ... [Pg.163]

High-resolution mass spectrometers have been used to obtain electrospray spectra and have the added advantage that they allow the direct determination of the charge state of the ions being observed, e.g. if the apparent separation of the and isotopic contributions is 0.1 Da, the charge state is 10, while if it is 0.05 Da, the charge state is 20, etc. [Pg.173]

MS-MS is a term that covers a number of techniques in which two stages of mass spectrometry are used to investigate the relationship between ions found in a mass spectrum. In particular, the product-ion scan is used to derive structural information from a molecular ion generated by a soft ionization technique such as electrospray and, as such, is an alternative to CVF. The advantage of the product-ion scan over CVF is that it allows a specific ion to be selected and its fragmentation to be studied in isolation, while CVF bring about the fragmentation of all species in the ion source and this may hinder interpretation of the data obtained. [Pg.208]

The fact that APCl and electrospray are soft ionization techniques is often advantageous because the molecular ion alone, in conjunction with HPLC separation, often provides adequate selectivity and sensitivity to allow an analytical method to be developed. Again, method development is important, particularly when more than one analyte is to be determined, when the effect of experimental parameters, such as pH, flow rate, etc., is not likely to be the same for each. Electrospray, in particular, is susceptible to matrix effects and the method of standard additions is often required to provide adequate accuracy and precision. [Pg.290]

The applicable HPLC flow rate with ESI is lower than that with thermospray or APCI, usually below the O.SmLmin range. The typical flow rate is 0.10-0.20 mL min for ESI, which means that the effluent flow introduced into the electrospray must be reduced by splitting when using a conventional HPLC column (4.6-mm i.d. x 250 mm). Currently, narrower columns (e.g., 2.1-mm i.d.) and slower flow rates are commonly used to achieve the desirable flow rates. The advantage of this approach is that improved separation efficiency and faster separations are also achieved (at the cost of sample capacity). [Pg.767]

Henry, C. M., Electrospray in Flight. Orthogonal acceleration brings the advantages of time of flight to electrospray, Anal. Chem. News Features, 71(5), 197A, 1999. [Pg.68]

Hau, J. and Roberts, M., Advantages of pressurization in capillary electrophoresis/electrospray ionization mass spectroscopy, Anal. Chem. 71, 3977,... [Pg.437]

The obvious alternative for the in-line flow-through cell in HPLC-FTIR is mobile-phase elimination ( transport interfacing), first reported in 1977 [495], and now the usual way of carrying out LC-FTIR, in particular for the identification of (minor) constituents of complex mixtures. Various spray-type LC-FTIR interfaces have been developed, namely, thermospray (TSP) [496], particle-beam (PB) [497,498], electrospray (ESP) [499] and pneumatic nebulisers [486], as compared by Som-sen et al. [500]. The main advantage of the TSP-based... [Pg.491]

The ionspray (ISP, or pneumatically assisted electrospray) LC-MS interface offers all the benefits of electrospray ionisation with the additional advantages of accommodating a wide liquid flow range (up to 1 rnl.rnin ) and improved ion current stability [536]. In most LC-MS applications, one aims at introducing the highest possible flow-rate to the interface. While early ESI interfaces show best performance at 5-l() iLrnin, ion-spray interfaces are optimised for flow-rates between 50 and 200 xLmin 1. A gradient capillary HPLC system (320 xm i.d., 3-5 xLmin 1) is ideally suited for direct coupling to an electrospray mass spectrometer [537]. In sample-limited cases, nano-ISP interfaces are applied which can efficiently be operated at sub-p,Lmin 1 flow-rates [538,539]. These flow-rates are directly compatible with micro- and capillary HPLC systems, and with other separation techniques (CE, CEC). [Pg.505]

Although electrospray ionisation has advantages for studies of ionic and very polar molecules, APCI is the preferred ionisation method for many other compounds - in that it provides better sensitivity and has advantages for quantitative studies. CE-APCI-MS studies were conducted on both QQQ and QITMS instruments [887]. [Pg.544]

Issaq, H.J., Janini, G.M., Chan, K.C., Veenstra, T.D. (2004). Sheathless electrospray ionization interfaces for capillary electrophoresis—mass spectrometric detection advantages and limitations. J. Chromatogr. A 1053, 37 42. [Pg.382]

For the last several years, mass spectrometry with atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) have determined the trends in the analysis of dyes. Since 1987, various variants of ESI have been used in which droplet formation was assisted by compressed air,[1,2] temperature (e.g. Turbo Ion Spray ) or ultrasound, and they were able to handle flow rates up to 1 2 ml min This made a combination of analytical RPLC and ESI easily and widely used. The reason why it often was (and is) used instead of a traditional UV-Vis detector is the better sensitivity and selectivity of MS in comparison with spectrophotometric detection. Apart from these advantages, MS offers easily interpretable structural information. However, various... [Pg.365]

The qualitative determination of anionic surfactants in environmental samples such as water extracts by flow injection analysis coupled with MS (FIA-MS) applying a screening approach in the negative ionisation mode sometimes may be very effective. Using atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI), coupled with FIA or LC in combination with MS, anionic surfactants are either predominantly or sometimes exclusively ionised in the negative mode. Therefore, overview spectra obtained by FIA—MS(—) often are very clear and free from disturbing matrix components that are ionisable only in the positive mode. However, the advantage of clear... [Pg.336]

If high-resolution measurements are performed in order to assign elemental compositions, internal mass calibration is almost always required. The calibration compound can be introduced from a second inlet system or be mixed with the analyte before the analysis. Mixing calibration compounds with the analyte requires some operational skills in order not to suppress the analyte by the reference or vice versa. Therefore, a separate inlet to introduce the calibration compound is advantageous. This can be achieved by introducing volatile standards such as PFK from a reference inlet system in electron ionization, by use of a dual-target probe in fast atom bombardment, or by use of a second sprayer in electrospray ionization. [Pg.100]

Direct injection API-Electrospray MS is capable of analyzing much larger and less volatile substances than either EI/MS or CI/MS. As a result, this method is often used to provide structural information on peptides, proteins, and polymers derived from both natural and synthetic processes it is also useful in the analysis of many natural compounds including molecules such as saponins and flavonol glycosides, derived from plants. When using direct injection API-electrospray, partial purification and EC preparation are performed elsewhere and a collected fraction is dissolved in an appropriate solvent and injected as a bolus into the mass spectrometer (flow or direct injection or syringe infusion). This has an advantage, as the mass... [Pg.153]

Inclusion of a second pump for effluent dilution and transfer supports both online and offline MS analysis. As shown above, fraction collection followed by LC/ MS analysis sigmficantly expands the performance characteristics of the FAC method, but the effluent can also be sampled for MALDI-based analysis. Advantages to this method include greater salt tolerance over the electrospray approach, extension to complex mixtures of protein and archiving of the mn. MALDI is generally considered to possess higher peak capadty than electrospray (at least... [Pg.239]

Mass spectrometry (MS) is widely used to ascertain the purity, total mass of the protein produced, and detect any covalent modifications (Cohen and Chait, 2001). Both electrospray ionization (ESI) and MALDI may be used although for intact proteins ESI has the advantage of being accurate to 1 Da. Using the simple protocol described in Protocol 2.11, the MS of whole protein samples can be readily automated without the need for sample preparation. This method has proved successful for the... [Pg.38]


See other pages where Electrosprays advantages is mentioned: [Pg.55]    [Pg.547]    [Pg.146]    [Pg.345]    [Pg.314]    [Pg.830]    [Pg.740]    [Pg.26]    [Pg.13]    [Pg.16]    [Pg.182]    [Pg.173]    [Pg.88]    [Pg.94]    [Pg.2]    [Pg.793]    [Pg.8]    [Pg.230]    [Pg.127]    [Pg.481]    [Pg.498]    [Pg.182]    [Pg.211]    [Pg.348]    [Pg.87]    [Pg.171]    [Pg.13]   
See also in sourсe #XX -- [ Pg.1544 ]




SEARCH



Desorption electrospray ionization advantages

Electrospray interface advantages

© 2024 chempedia.info