Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronics schematic

Figure 11.11. Integration of nanowire photonics with silicon electronics. Schematic illustrating fabrication of hybrid structures. A silicon-on-insulator (SOI) substrate is patterned by standard electron-beam or photolithography followed by reactive ion etching. Emissive NWs are then aligned onto the patterned SOI substrate to form photonic sources. [Reprinted with permission from Ref. 59. Copyright 2005 Wiley-VCH Verlag.]... Figure 11.11. Integration of nanowire photonics with silicon electronics. Schematic illustrating fabrication of hybrid structures. A silicon-on-insulator (SOI) substrate is patterned by standard electron-beam or photolithography followed by reactive ion etching. Emissive NWs are then aligned onto the patterned SOI substrate to form photonic sources. [Reprinted with permission from Ref. 59. Copyright 2005 Wiley-VCH Verlag.]...
Fig. 1 Diagram of a single photodiode-capacitor switch (top) and an electronic schematic of the linear array (bottom). Fig. 1 Diagram of a single photodiode-capacitor switch (top) and an electronic schematic of the linear array (bottom).
Fig. 7.14.4 Principle electronic schematic of the rain sensor module... Fig. 7.14.4 Principle electronic schematic of the rain sensor module...
Specific s)rmbols can be public or private. The more widespread the cultural acceptance of a symbol s meaning, the more public it is since anyone who knows the coding process can understand the symbol. On the other hand, the more restricted the information about the symbol and its coding process, such as DOT symbols or electronic schematic S3rmbols, the more private they are. [Pg.21]

In the depicted case in Fig. 2.7 only a minority electron can fill the li hole, when exciting with He(2 S) atoms, leading to an intensity f of the escaping 2s electrons. By exciting with He(2 S) atoms, only majority electrons can tunnel to the helium atom leading to an electron intensity 7. For ferromagnetic materials the spin resolved densities of states are different for majority and minority electrons (schematically shown on the left hand side of Fig. 2.8). Thus, the asymmetry A, normalized to the polarization of the incident atomic beam with polarization Pa> corresponds to the difference in the DOS for the majority and minority electrons ... [Pg.12]

Mg.l. Electronic schematic for the nexafs photoabsorption spectrum of poly(styrene-r-acrylonitrile). The C Is binding energies were obtained from xps. Orbital energies of the C Is LUMO(jt ) transition of the phenyl (A) and acrylonitrile (B) functional groups were obtained from ah initio calculations. Reproduced from Ref. 1. [Pg.9330]

We realized an Eddy current SQUID system of the high frequency type a room temperature Eddy current probe is connected to a SQUID sensor at hquid nitrogen temperature. Fig.3 gives an overview over the components of the system, fig, 5 shows a schematic diagram of the electronics. [Pg.300]

Although direct coupling of a camera to a scintillator can give acceptable results one of its major drawback is the degradation of the quantum noise mainly related to the low transmission of the optics. The following schematics summarizes the particles flux (photons and electrons) across the different stages of the detector ... [Pg.595]

While field ion microscopy has provided an effective means to visualize surface atoms and adsorbates, field emission is the preferred technique for measurement of the energetic properties of the surface. The effect of an applied field on the rate of electron emission was described by Fowler and Nordheim [65] and is shown schematically in Fig. Vlll 5. In the absence of a field, a barrier corresponding to the thermionic work function, prevents electrons from escaping from the Fermi level. An applied field, reduces this barrier to 4> - F, where the potential V decreases linearly with distance according to V = xF. Quantum-mechanical tunneling is now possible through this finite barrier, and the solufion for an electron in a finite potential box gives... [Pg.300]

Fig. VIII-5. Schematic potential energy diagram for electrons in a metal with and without an applied field , work function Ep, depth of the Fermi level. (From Ref. 62.)... Fig. VIII-5. Schematic potential energy diagram for electrons in a metal with and without an applied field , work function Ep, depth of the Fermi level. (From Ref. 62.)...
Figure Al.6.14. Schematic diagram showing the promotion of the initial wavepacket to the excited electronic state, followed by free evolution. Cross-correlation fiinctions with the excited vibrational states of the ground-state surface (shown in the inset) detennine the resonance Raman amplitude to those final states (adapted from [14]. Figure Al.6.14. Schematic diagram showing the promotion of the initial wavepacket to the excited electronic state, followed by free evolution. Cross-correlation fiinctions with the excited vibrational states of the ground-state surface (shown in the inset) detennine the resonance Raman amplitude to those final states (adapted from [14].
Figure Al.6.24. Schematic representation of a photon echo in an isolated, multilevel molecule, (a) The initial pulse prepares a superposition of ground- and excited-state amplitude, (b) The subsequent motion on the ground and excited electronic states. The ground-state amplitude is shown as stationary (which in general it will not be for strong pulses), while the excited-state amplitude is non-stationary. (c) The second pulse exchanges ground- and excited-state amplitude, (d) Subsequent evolution of the wavepackets on the ground and excited electronic states. Wlien they overlap, an echo occurs (after [40]). Figure Al.6.24. Schematic representation of a photon echo in an isolated, multilevel molecule, (a) The initial pulse prepares a superposition of ground- and excited-state amplitude, (b) The subsequent motion on the ground and excited electronic states. The ground-state amplitude is shown as stationary (which in general it will not be for strong pulses), while the excited-state amplitude is non-stationary. (c) The second pulse exchanges ground- and excited-state amplitude, (d) Subsequent evolution of the wavepackets on the ground and excited electronic states. Wlien they overlap, an echo occurs (after [40]).
Figure Al.7.4. Schematic illustration of two Si atoms as they would be oriented on the (100) surface, (a) Bulk-tenuiuated structure showing two dangling bonds (lone electrons) per atom, (b) Synnnetric dimer, in which two electrons are shared and each atom has one remaining dangling bond, (c) Asynnnetric dimer in which two electrons pair up on one atom and the otiier has an empty orbital. Figure Al.7.4. Schematic illustration of two Si atoms as they would be oriented on the (100) surface, (a) Bulk-tenuiuated structure showing two dangling bonds (lone electrons) per atom, (b) Synnnetric dimer, in which two electrons are shared and each atom has one remaining dangling bond, (c) Asynnnetric dimer in which two electrons pair up on one atom and the otiier has an empty orbital.
Figure Al.7.11. Schematic diagram of a generic surface science experiment. Particles, such as photons, electrons, or ions, are mcident onto a solid surface, while the particles emitted from the surface are collected and measured by the detector. Figure Al.7.11. Schematic diagram of a generic surface science experiment. Particles, such as photons, electrons, or ions, are mcident onto a solid surface, while the particles emitted from the surface are collected and measured by the detector.
In moist enviromnents, water is present either at the metal interface in the fonn of a thin film (perhaps due to condensation) or as a bulk phase. Figure A3.10.1 schematically illustrates another example of anodic dissolution where a droplet of slightly acidic water (for instance, due to H2SO4) is in contact with an Fe surface in air [4]. Because Fe is a conductor, electrons are available to reduce O2 at the edges of the droplets. [Pg.922]

Figure Bl.7.1. Schematic diagram of an electron ionization ion source source block (1) filament (2) trap electrode (3) repeller electrode (4) acceleration region (5) focusing lens (6). Figure Bl.7.1. Schematic diagram of an electron ionization ion source source block (1) filament (2) trap electrode (3) repeller electrode (4) acceleration region (5) focusing lens (6).
Figure Bl.7.4. Schematic diagram of a reverse geometry (BE) magnetic sector mass spectrometer ion source (1) focusing lens (2) magnetic sector (3) field-free region (4) beam resolving slits (5) electrostatic sector (6) electron multiplier detector (7). Second field-free region components collision cells (8) and beam deflection electrodes (9). Figure Bl.7.4. Schematic diagram of a reverse geometry (BE) magnetic sector mass spectrometer ion source (1) focusing lens (2) magnetic sector (3) field-free region (4) beam resolving slits (5) electrostatic sector (6) electron multiplier detector (7). Second field-free region components collision cells (8) and beam deflection electrodes (9).
Figure Bl.9.12. The schematic diagram of the relationships between the one-dimensional electron density profile, p(r), correlation fiinction y (r) and interface distribution fiinction gj(r). Figure Bl.9.12. The schematic diagram of the relationships between the one-dimensional electron density profile, p(r), correlation fiinction y (r) and interface distribution fiinction gj(r).
Figure Bl.10.12. Schematic diagram of a two-dimensional histogram resulting from the triple coincidence experiment shown in figure BLIP. 10. True triple coincidences are superimposed on a imifomi background and tliree walls corresponding to two electron correlated events with a randomly occurring third electron. Figure Bl.10.12. Schematic diagram of a two-dimensional histogram resulting from the triple coincidence experiment shown in figure BLIP. 10. True triple coincidences are superimposed on a imifomi background and tliree walls corresponding to two electron correlated events with a randomly occurring third electron.
Figure Bl.15.8. (A) Left side energy levels for an electron spin coupled to one nuclear spin in a magnetic field, S= I =, gj >0, a<0, and a l 2h)<(a. Right side schematic representation of the four energy levels with )= Mg= , Mj= ). +-)=1, ++)=2, -)=3 and -+)=4. The possible relaxation paths are characterized by the respective relaxation rates W. The energy levels are separated horizontally to distinguish between the two electron spin transitions. Bottom ENDOR spectra shown when a /(21j)< ca (B) and when co < a /(2fj) (C). Figure Bl.15.8. (A) Left side energy levels for an electron spin coupled to one nuclear spin in a magnetic field, S= I =, gj >0, a<0, and a l 2h)<(a. Right side schematic representation of the four energy levels with )= Mg= , Mj= ). +-)=1, ++)=2, -)=3 and -+)=4. The possible relaxation paths are characterized by the respective relaxation rates W. The energy levels are separated horizontally to distinguish between the two electron spin transitions. Bottom ENDOR spectra shown when a /(21j)< ca (B) and when co < a /(2fj) (C).
Figure Bl.17.2. Typical electron beam path diagrams for TEM (a), STEM (b) and SEM (c). These schematic diagrams illustrate the way the different signals can be detected m the different instmments. Figure Bl.17.2. Typical electron beam path diagrams for TEM (a), STEM (b) and SEM (c). These schematic diagrams illustrate the way the different signals can be detected m the different instmments.
Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-... Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-...
Figure Bl.23.5. Schematic illustration of tlie TOE-SARS spectrometer system. A = ion gun, B = Wien filter, C = Einzel lens, D = pulsing plates, E = pulsing aperture, E = deflector plates, G = sample, PI = electron multiplier detector with energy prefilter grid and I = electrostatic deflector. Figure Bl.23.5. Schematic illustration of tlie TOE-SARS spectrometer system. A = ion gun, B = Wien filter, C = Einzel lens, D = pulsing plates, E = pulsing aperture, E = deflector plates, G = sample, PI = electron multiplier detector with energy prefilter grid and I = electrostatic deflector.
Figure Bl.24.14. A schematic diagram of x-ray generation by energetic particle excitation, (a) A beam of energetic ions is used to eject inner-shell electrons from atoms in a sample, (b) These vacancies are filled by outer-shell electrons and the electrons make a transition in energy in moving from one level to another this energy is released in the fomi of characteristic x-rays, the energy of which identifies that particular atom. The x-rays that are emitted from the sample are measured witli an energy dispersive detector. Figure Bl.24.14. A schematic diagram of x-ray generation by energetic particle excitation, (a) A beam of energetic ions is used to eject inner-shell electrons from atoms in a sample, (b) These vacancies are filled by outer-shell electrons and the electrons make a transition in energy in moving from one level to another this energy is released in the fomi of characteristic x-rays, the energy of which identifies that particular atom. The x-rays that are emitted from the sample are measured witli an energy dispersive detector.
The most widely employed optical method for the study of chemical reaction dynamics has been laser-induced fluorescence. This detection scheme is schematically illustrated in the left-hand side of figure B2.3.8. A tunable laser is scanned tlnough an electronic band system of the molecule, while the fluorescence emission is detected. This maps out an action spectrum that can be used to detemiine the relative concentrations of the various vibration-rotation levels of the molecule. [Pg.2071]

Figure C 1.2.9. Schematic representation of photo induced electron transfer events in fullerene based donor-acceptor arrays (i) from a TTF donor moiety to a singlet excited fullerene and (ii) from a mthenium excited MLCT state to the ground state fullerene. Figure C 1.2.9. Schematic representation of photo induced electron transfer events in fullerene based donor-acceptor arrays (i) from a TTF donor moiety to a singlet excited fullerene and (ii) from a mthenium excited MLCT state to the ground state fullerene.
Figure C2.16.7. A schematic energy band diagram of a p-n junction witliout external bias (a) and under forward bias (b). Electrons and holes are indicated witli - and + signs, respectively. It should be remembered tliat tlie energy of electrons increases by moving up, holes by moving down. Electrons injected into tlie p side of tlie junction become minority carriers. Approximate positions of donor and acceptor levels and tlie Feniii level, are indicated. Figure C2.16.7. A schematic energy band diagram of a p-n junction witliout external bias (a) and under forward bias (b). Electrons and holes are indicated witli - and + signs, respectively. It should be remembered tliat tlie energy of electrons increases by moving up, holes by moving down. Electrons injected into tlie p side of tlie junction become minority carriers. Approximate positions of donor and acceptor levels and tlie Feniii level, are indicated.
A more effective carrier confinement is offered by a double heterostructure in which a thin layer of a low-gap material is sandwiched between larger-gap layers. The physical junction between two materials of different gaps is called a heterointerface. A schematic representation of the band diagram of such a stmcture is shown in figure C2.l6.l0. The electrons, injected under forward bias across the p-n junction into the lower-bandgap material, encounter a potential barrier AE at the p-p junction which inliibits their motion away from the junction. The holes see a potential barrier of... [Pg.2893]

Sensitivity levels more typical of kinetic studies are of the order of lO molecules cm . A schematic diagram of an apparatus for kinetic LIF measurements is shown in figure C3.I.8. A limitation of this approach is that only relative concentrations are easily measured, in contrast to absorjDtion measurements, which yield absolute concentrations. Another important limitation is that not all molecules have measurable fluorescence, as radiationless transitions can be the dominant decay route for electronic excitation in polyatomic molecules. However, the latter situation can also be an advantage in complex molecules, such as proteins, where a lack of background fluorescence allow s the selective introduction of fluorescent chromophores as probes for kinetic studies. (Tryptophan is the only strongly fluorescent amino acid naturally present in proteins, for instance.)... [Pg.2958]


See other pages where Electronics schematic is mentioned: [Pg.111]    [Pg.111]    [Pg.87]    [Pg.108]    [Pg.236]    [Pg.265]    [Pg.872]    [Pg.1319]    [Pg.1329]    [Pg.1407]    [Pg.1426]    [Pg.1433]    [Pg.1436]    [Pg.1842]    [Pg.2066]    [Pg.2070]    [Pg.2213]    [Pg.2389]    [Pg.2802]    [Pg.2892]    [Pg.2956]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Electron affinity schematic)

Electron experiment, schematic

Electron ionization schematic

Electron redistribution schematic

Electron spectrometer, schematic diagram

Electron spin energy level, schematic

Electron spin energy level, schematic representation

Electron transport schematic

Electron tunneling barrier schematic

Scanning electron microscopy schematic

Schematic diagram Auger electron spectrometer

© 2024 chempedia.info