Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-surface interaction mechanisms

A third mechanism, first observed in gas-phase electron-impact scattering, has been referred to as negative-ion resonance. In this process, an electron is trapped, within 10 s, inside the molecule in a negative-ion state. For chemisorbed molecules, however, the adsorbate-substrate chemical bond and the electron-surface interactions can dramatically alter the resonance properties. Hence, for HREELS at metal surfaces, this mechanism is quite rare it will not be treated further in this article. [Pg.6061]

Perhaps the most significant complication in the interpretation of nanoscale adhesion and mechanical properties measurements is the fact that the contact sizes are below the optical limit ( 1 t,im). Macroscopic adhesion studies and mechanical property measurements often rely on optical observations of the contact, and many of the contact mechanics models are formulated around direct measurement of the contact area or radius as a function of experimentally controlled parameters, such as load or displacement. In studies of colloids, scanning electron microscopy (SEM) has been used to view particle/surface contact sizes from the side to measure contact radius [3]. However, such a configuration is not easily employed in AFM and nanoindentation studies, and undesirable surface interactions from charging or contamination may arise. For adhesion studies (e.g. Johnson-Kendall-Roberts (JKR) [4] and probe-tack tests [5,6]), the probe/sample contact area is monitored as a function of load or displacement. This allows evaluation of load/area or even stress/strain response [7] as well as comparison to and development of contact mechanics theories. Area measurements are also important in traditional indentation experiments, where hardness is determined by measuring the residual contact area of the deformation optically [8J. For micro- and nanoscale studies, the dimensions of both the contact and residual deformation (if any) are below the optical limit. [Pg.194]

Part of a 15-nm long, 10 A tube, is given in Fig. 1. Its surface atomic structure is displayed[14], A periodic lattice is clearly seen. The cross-sectional profile was also taken, showing the atomically resolved curved surface of the tube (inset in Fig. 1). Asymmetry variations in the unit cell and other distortions in the image are attributed to electronic or mechanical tip-surface interactions[15,16]. From the helical arrangement of the tube, we find that it has zigzag configuration. [Pg.66]

Figure 6.14d shows the electron donation interaction (electrons are transferred from the initially fully occupied 5a molecular orbitals to the Fermi level of the metal, thus this is an electron donation interaction). Blyholder was first to discuss that CO chemisorption on transition metal involves both donation and backdonation of electrons.4 We now know both experimentally7 and theoretically96,98 that the electron backdonation mechanism is usually predominant, so that CO behaves on most transition metal surfaces as an overall electron acceptor. [Pg.302]

The second procedure is different from the previous one in several aspects. First, the metallic substrate employed is Au, which does not show a remarkable dissolution under the experimental conditions chosen, so that no faradaic processes are involved at either the substrate or the tip. Second, the tip is polarized negatively with respect to the surface. Third, the potential bias between the tip and the substrate must be extremely small (e.g., -2 mV) otherwise, no nanocavity formation is observed. Fourth, the potential of the substrate must be in a region where reconstruction of the Au(lll) surface occurs. Thus, when the bias potential is stepped from a significant positive value (typically, 200 mV) to a small negative value and kept there for a period of several seconds, individual pits of about 40 nm result, with a depth of two to four atomic layers. According to the authors, this nanostructuring procedure is initiated by an important electronic (but not mechanical) contact between tip and substrate. As a consequence of this interaction, and stimulated by an enhanced local reconstruction of the surface, some Au atoms are mobilized from the Au surface to the tip, where they are adhered. When the tip is pulled out of the surface, a pit with a mound beside it is left on the surface. The formation of the connecting neck between the tip and surface is similar to the TILMD technique described above but with a different hnal result a hole instead of a cluster on the surface (Chi et al., 2000). [Pg.688]

A substantial number of electrons are elastically scattered, and this gives rise to a strong elastic peak in the spectrum. When an electron of low energy (2-5 eY) approaches a surface, it can be scattered inelastically by two basic mechanisms, and the data obtained are dependent upon the experimental geometry - specifically the angles of the incident and the (analysed) scattered beams with respect to the surface (0 and 02 in Figure 5.47). Within a certain distance of the surface the incident electron can interact with the dipole field associated a particular surface vibration, e.g. either the vibrations of the surface atoms of the substrate itself, or one or other... [Pg.196]

The main modification that enables the system to analyze in situ reactions is the custom built chamber for the STM stage with indirect heating via an electron beam. Therefore, the sample can be brought to the desired temperature and pressure without disturbing surface interactions. While this technique is primarily used for model catalysts to be studied, it provides very good insight into the mechanisms present over a range of pressures. [Pg.205]

There is growing interest in a variety small micro power sources that deliver a few Watts. Such systems, which can provide direct mechanical power or serve as battery alternatives for electronic devices, often rely on the flow and reaction of fuels in small channels. In addition to fuel cells, other technologies include thermoelectrics and small-scale internal-combustion engines. These applications require attention to low-speed chemically reacting flow, often with significant surface interactions. [Pg.10]

The detail of the structure of the polymerisation centre present in suppported Ziegler-Natta catalysts for a-olefin polymerisation has been the subject of much research effort (e.g./-/2) The catalyst consists of a solid catalyst MgC /TiC /electron donor and a co-catalyst, an aluminium alkyl complexed with an electron donor. Proposed mechanisms for the polymerisation involve a titanium species attached to magnesium chloride with the olefin coordinated to titanium. The detail of the site at which the titanium species is attached is an important area of study in understanding the mechanism of catalysis and several recent papers 10-12) have investigated the surface structure of magnesium chloride and the attachment of TiCl4, in particular the interaction of titanium species with the 100 and 110 planes of a and (3- magnesium chloride. [Pg.251]

The application of surface-enhanced Raman spectroscopy (SERS) for monitoring redox and other processes at metal-solution interfaces is illustrated by means of some recent results obtained in our laboratory. The detection of adsorbed species present at outer- as well as inner-sphere reaction sites is noted. The influence of surface interaction effects on the SER spectra of adsorbed redox couples is discussed with a view towards utilizing the frequency-potential dependence of oxidation-state sensitive vibrational modes as a criterion of reactant-surface electronic coupling effects. Illustrative data are presented for Ru(NH3)63+/2+ adsorbed electrostatically to chloride-coated silver, and Fe(CN)63 /" bound to gold electrodes the latter couple appears to be valence delocalized under some conditions. The use of coupled SERS-rotating disk voltammetry measurements to examine the kinetics and mechanisms of irreversible and multistep electrochemical reactions is also discussed. Examples given are the outer- and inner-sphere one-electron reductions of Co(III) and Cr(III) complexes at silver, and the oxidation of carbon monoxide and iodide at gold electrodes. [Pg.135]

The mechanism for the perturbation of the fluorescence properties of the monolayers by the metal ions is not well understood yet. The type of ligating functionality and its distribution across the layer, together with possible steric constraints or additional surface interactions, such as monolayer packing, van der Waals forces, and cation-jr, and jr-ir interactions, may determine the properties of the layers, and therefore the response toward different metal ions. Cation-controlled photoinduced processes, such as photoinduced electron transfer and charge transfer, may be responsible for the fluorescence perturbation.45... [Pg.93]


See other pages where Electron-surface interaction mechanisms is mentioned: [Pg.291]    [Pg.291]    [Pg.494]    [Pg.495]    [Pg.283]    [Pg.2059]    [Pg.444]    [Pg.79]    [Pg.274]    [Pg.320]    [Pg.41]    [Pg.536]    [Pg.54]    [Pg.46]    [Pg.311]    [Pg.88]    [Pg.400]    [Pg.149]    [Pg.120]    [Pg.152]    [Pg.72]    [Pg.1]    [Pg.247]    [Pg.248]    [Pg.78]    [Pg.271]    [Pg.162]    [Pg.49]    [Pg.153]    [Pg.627]    [Pg.375]    [Pg.333]    [Pg.125]    [Pg.271]    [Pg.27]    [Pg.75]   


SEARCH



Electron mechanisms

Electronic interactions

Interacting Surface

Interacting mechanisms

Mechanical interaction

Mechanisms surfaces

Surface electronic

Surface electrons

Surface mechanics

Surfaces Mechanical

© 2024 chempedia.info