Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heating indirect

Even if the reactor temperature is controlled within acceptable limits, the reactor effluent may need to be cooled rapidly, or quenched, to stop the reaction quickly to prevent excessive byproduct formation. This quench can be accomplished by indirect heat transfer using conventional heat transfer equipment or by direct heat transfer by mixing with another fluid. A commonly encountered situation is... [Pg.42]

Find a way to overcome the constraint while still maintaining the areas. This is often possible by using indirect heat transfer between the two areas. The simplest option is via the existing utility system. For example, rather than have a direct match between two streams, one can perhaps generate steam to be fed into the steam mains and the other use steam from the same mains. The utility system then acts as a buffer between the two areas. Another possibility might be to use a heat transfer medium such as a hot oil which circulates between the two streams being matched. To maintain operational independence, a standby heater and cooler supplied by utilities is needed in the hot oil circuit such that if either area is not operational, utilities could substitute heat recovery for short periods. [Pg.184]

Indirect heat transfer with the reactor. Although indirect heat transfer with the reactor tends to bring about the most complex reactor design options, it is often preferable to the use of a heat carrier. A heat carrier creates complications elsewhere in the flowsheet. A number of options for indirect heat transfer were discussed earlier in Chap. 2. [Pg.326]

For indirect heat transfer, the heat integration characteristics of the reactor can be broken down into three cases ... [Pg.327]

If indirect heat transfer is used with a large temperature difference to promote high rates of cooling, then the cooling fluid (e.g., boiling water) is fixed by process requirements. In this case, the heat of reaction is not available at the temperature of the reactor effluent. Rather, the heat of reaction becomes available at the temperature of the quench fluid. Thus the feed stream to the reactor is a cold stream, the quench fluid is a hot stream, and the reactor effluent after the quench is also a hot stream. [Pg.329]

Fig. 1. Main types of electric furnaces (a) resistance furnace, indirect heat (resistor furnace) (b) resistance furnace, direct heat (c) arc furnace (d) induction furnace. A, charge to be heated or melted B, refractory furnace lining C, electric power supply D, resistors E, electrodes F, electric arc G,... Fig. 1. Main types of electric furnaces (a) resistance furnace, indirect heat (resistor furnace) (b) resistance furnace, direct heat (c) arc furnace (d) induction furnace. A, charge to be heated or melted B, refractory furnace lining C, electric power supply D, resistors E, electrodes F, electric arc G,...
Investment, Costs, and Prices for Barley and Malt. Estimated malthouse investment (1993) and costs for a new malthouse with annual capacity of 120,000 t are shown in Table 2. This malthouse is equipped with twelve 1,700-bushel steep tanks, eight 10,000-bushel germination compartments, and two double-deck kilns. The kilns are equipped with standard heat recovery units and indirect heat. [Pg.483]

Vacuum Treatment. Milk can be exposed to a vacuum to remove low boiling substances, eg, onions, garlic, and some silage, which may impart off-flavors to the milk, particularly the fat portion. A three-stage vacuum unit, known as a vacreator, produces pressures of 17, 51—68, and 88—95 kPa (127, 381—508, and 660—711 mm Hg). A continuous vacuum unit in the HTST system may consist of one or two chambers and be heated by Hve steam, with an equivalent release of water by evaporation, or flash steam to carry off the volatiles. If Hve steam is used, it must be cuUnary steam which is produced by heating potable water with an indirect heat exchanger. Dry saturated steam is desired for food processing operations. [Pg.359]

DH = direct heat IH = indirect heat. Heat-tiansfei medium is given in parentheses. CC = countercurrent CO is concurrent. [Pg.348]

Above-Ground Retorting. AGR processes can be grouped into DH or IH processes. Numerous design configurations as well as a variety of heat-transport mediums have been used in the indirect heated processes (Table 7). [Pg.348]

Enerco, Inc. (Yardley, Pennsylvania) has a 600 tine/d demonstration pyrolysis plant located in Indiana, Pennsylvania. The faciUty operated 8 h/d, 5 d/wk for six months. The process involves pyrolysis in a 5.4 t/d batch-operated retort chamber. The heated tines are broken down to cmde oil, noncondensable gases, pyrolytic filter, steel (qv), and fabric waste. In this process, hot gases are fed direcdy to the mbber rather than using indirect heating as in most other pyrolyses. The pyrolysis plant was not operating as of early 1996. [Pg.15]

Steam is introduced at the base of the whiskey column through a sparger. Where economy is an important factor, as in a fuel alcohol plant, a calandtia is employed as the source of indirect heat. The diameter of the stiU, number of perforated and bubble cap plates, capacity of the doubler, and proof of distiUation are the critical factors that largely determine the characteristics of a whiskey. [Pg.85]

Contact Drying. Contact drying occurs when wet material contacts a warm surface in an indirect-heat dryer (15—18). A sphere resting on a flat heated surface is a simple model. The heat-transfer mechanisms across the gap between the surface and the sphere are conduction and radiation. Conduction heat transfer is calculated, approximately, by recognizing that the effective conductivity of a gas approaches 0, as the gap width approaches 0. The gas is no longer a continuum and the rarified gas effect is accounted for in a formula that also defines the conduction heat-transfer coefficient ... [Pg.242]

Between 1 s and 1 min specific contact time, conduction heat-transfer performance decreases theoretically as the 0.29 power of contact time. This is consistent with empirical data from several forms of indirect-heat dryers which show performance variation as the 0.4 power of rotational speed (21). In agitator-stirred and rotating indirect-heat dryers, specific contact time can be related to rotational speed provided that speed does not affect the physical properties of the material. To describe the mixing efficiency of various devices, the concept of a mixing parameter is employed. An ideal mixer has a parameter of 1. [Pg.242]

Industrial dryers may be broadly classified by heat-transfer method as being either direct or indirect heat. Dryers evolved from material handling equipment and thus most types of industrial dryers are specially suited for certain forms of material. Dryers are also classified as being batch or continuous. [Pg.247]

Gas flow in these rotary dryers may be cocurrent or countercurrent. Cocurrent operation is preferred for heat-sensitive materials because gas and product leave at the same temperature. Countercurrent operation allows a product temperature higher than the exit gas temperature and dryer efficiency may be as high as 70%. Some dryers have enlarged cylinder sections at the material exit end to increase material holdup, reduce gas velocity, and minimize dusting. Indirectly heated tubes are installed in some dryers for additional heating capacity. To prevent dust and vapor escape at the cylinder seals, most rotary dryers operate at a negative internal pressure of 50—100 Pa (0.5—1.0 cm of water). [Pg.249]

Based on dryer cost alone, indirect-heat dryers are more expensive to build and install than direct-heat dryers designed for the same duty. As environmental concerns and resulting restrictions on process emissions increase, however, indirect-heat dryers are more attractive because they employ purge gas only to remove vapor and not to transport heat as well. Dust and vapor recovery systems for indirect-heat dryers are smaller and less cosdy to supply heat for drying, gas throughput in direct-heat dryers is 3—10 kg/kg of water evaporated indirect-heat dryers require only 1—1.5 kg/kg of vapor removed. System costs vary directly with size, so whereas more money may be spent for the dryer, much more is saved in recovery costs. Wet scmbbers ate employed for dust recovery on indirect-heat dryers because dryer exit gas usually is close to saturation. Where dry systems are employed, all external surfaces must be insulated and traced to prevent vapor condensation inside. [Pg.253]

Fig. 22. Indirect-heat, paddle-type agitator dryer. Fig. 22. Indirect-heat, paddle-type agitator dryer.
Fig. 23. Indirect-heat, high speed agitator dryer. Fig. 23. Indirect-heat, high speed agitator dryer.
Drum Dyers. Indirect-heat dmm dryers, like spray dryers, are usable only for materials that are fluid initially and pumpable. Drying is effected by applying a thin film of material onto the outer surface of a rotating heated dmm using appHcator roUs, spray nozzles, or by dipping the dmm into a reservoir. Usually the dmm is cast iron or steel and chrome-plated to provide a smooth surface for ease of product release by doctoring. Dmm rotational speed is such that... [Pg.255]


See other pages where Heating indirect is mentioned: [Pg.42]    [Pg.332]    [Pg.510]    [Pg.279]    [Pg.279]    [Pg.118]    [Pg.428]    [Pg.481]    [Pg.347]    [Pg.350]    [Pg.367]    [Pg.14]    [Pg.106]    [Pg.200]    [Pg.25]    [Pg.119]    [Pg.295]    [Pg.502]    [Pg.237]    [Pg.237]    [Pg.241]    [Pg.241]    [Pg.247]    [Pg.247]    [Pg.251]    [Pg.253]    [Pg.254]    [Pg.254]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



© 2024 chempedia.info