Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron microprobe technique

Analytical studies, using scanning electron microscopy and electron microprobe techniques (see Textbox 10), revealed that the mixture used for making this particular type of ceramic material consists mainly of clay, comminuted... [Pg.279]

The amount and uniformity of the solid state reaction of halogen with TTF was probed by the electron microprobe technique. In this analytical method, low energy electron irradiation of a sample provides X-ray core level emissions, characteristic of the element and its relative concentration. Our initial analyses indicated a dramatic dependence of the halogen concentration with the energy of the electron beam. To probe this phenomenon further,... [Pg.84]

SIMS (61,64,86), microscopy (65), XPS (56), electron microprobe techniques (14,66), electron paramagnetic resonance (EPR) (67) and luminescence experiments (68) have been successfully employed to probe and study V mobility and reactivity on a catalyst surface. TEM, STEM and energy dispersive X-ray emission (EDX) measurements have indicated that V interaction with REY-crystals induced vanadate clusters formation (65). Vanadium was also found capable of reacting with rare-earths outside the zeolite cavities to form LaVQ4... [Pg.355]

An interesting feature of some saddle dolomite is the presence of anhedral inclusions of calcite ranging in diameter from < 1 pm to a few tens of micrometres. Using electron microprobe techniques, Radke Mathis (1980) documented the... [Pg.445]

AugCT electron spectroscopy (AES) is based on a two-step process as shown schematically in Fig. 3.21a. When an electron is emitted from the inner atomic orbital through collision with an incident electron beam, the resulting vacant site is soon filled by another electron from an outer orbital. The energy released in the transition may appear as an x-ray photon (the characteristic x-rays used in electron microprobe techniques for compositional analysis) or may be transferred to another electron in an outer orbital which is ejected from the atom with a kinetic energy given by... [Pg.170]

The carbon content of the catalyst, determined by a special electron microprobe technique, is shown... [Pg.61]

Edx is based on the emission of x-rays with energies characteristic of the atom from which they originate in Heu of secondary electron emission. Thus, this technique can be used to provide elemental information about the sample. In the sem, this process is stimulated by the incident primary beam of electrons. As will be discussed below, this process is also the basis of essentially the same technique but performed in an electron spectrometer. When carried out this way, the technique is known as electron microprobe analysis (ema). [Pg.271]

Electron Microprobe A.na.Iysis, Electron microprobe analysis (ema) is a technique based on x-ray fluorescence from atoms in the near-surface region of a material stimulated by a focused beam of high energy electrons (7—9,30). Essentially, this method is based on electron-induced x-ray emission as opposed to x-ray-induced x-ray emission, which forms the basis of conventional x-ray fluorescence (xrf) spectroscopy (31). The microprobe form of this x-ray fluorescence spectroscopy was first developed by Castaing in 1951 (32), and today is a mature technique. Primary beam electrons with energies of 10—30 keV are used and sample the material to a depth on the order of 1 pm. X-rays from all elements with the exception of H, He, and Li can be detected. [Pg.285]

The characteristic feature of solid—solid reactions which controls, to some extent, the methods which can be applied to the investigation of their kinetics, is that the continuation of product formation requires the transportation of one or both reactants to a zone of interaction, perhaps through a coherent barrier layer of the product phase or as a monomolec-ular layer across surfaces. Since diffusion at phase boundaries may occur at temperatures appreciably below those required for bulk diffusion, the initial step in product formation may be rapidly completed on the attainment of reaction temperature. In such systems, there is no initial delay during nucleation and the initial processes, perhaps involving monomolec-ular films, are not readily identified. The subsequent growth of the product phase, the main reaction, is thereafter controlled by the diffusion of one or more species through the barrier layer. Microscopic observation is of little value where the phases present cannot be unambiguously identified and X-ray diffraction techniques are more fruitful. More recently, the considerable potential of electron microprobe analyses has been developed and exploited. [Pg.37]

Scanning electron microscopy and replication techniques provide information concerning the outer surfaces of the sample only. Accurate electron microprobe analyses require smooth surfaces. To use these techniques profitably, it is therefore necessary to incorporate these requirements into the experimental design, since the interfaces of interest are often below the external particle boundary. To investigate the zones of interest, two general approaches to sample preparation have been used. [Pg.39]

An accurate determination of critical load Wcr is sometimes difficult. Several techniques, such as (1) microscopic observation (optical or SEM) during the test, (2) chemical analysis of the bottom of the scratch channel (with electron microprobes), and (3) acoustic emission, have been used to obtain the critical load. [Pg.25]

Analytical electron microscopy (AEM) permits elemental and structural data to be obtained from volumes of catalyst material vastly smaller in size than the pellet or fluidized particle typically used in industrial processes. Figure 1 shows three levels of analysis for catalyst materials. Composite catalyst vehicles in the 0.1 to lOim size range can be chemically analyzed in bulk by techniques such as electron microprobe, XRD, AA, NMR,... [Pg.361]

There are two principal sources of reliable partitioning data for any trace element glassy volcanic rocks and high temperature experiments. For the reasons outlined above, both sources rely on analytical techniques with high spatial resolution. Typically these are microbeam techniques, such as electron-microprobe (EMPA), laser ablation ICP-MS, ion-microprobe secondary ion mass spectrometry (SIMS) or proton-induced X-ray emission (PIXE). [Pg.62]

The advantage of p-PIXE analysis over the scanning electron microprobe arises from the presence of a strong Bremsstrahlung background in the latter, which tends to mask the characteristic X-ray peaks. There is thus a striking difference in sensitivity between the two techniques the detection limits are of the order of 0.1% for the electron microprobe and 0.001% for p-PIXE. [Pg.102]

Sample purity is documented with SEM, TEM, and electron microprobe elemental analysis. Raman and UV-vis-near-IR spectra are also useful techniques that can be used to examine the quality of CNTs at the different stages of the purification procedure. [Pg.487]

As indicated in Fig. 7.2, X-rays are among the by-products in an electron microscope. Already at the beginning of this century, people knew that matter emits X-rays when it is bombarded with electrons. The explanation of the phenomenon came with the development of quantum mechanics. Nowadays, it is the basis for determining composition on the submicron scale and, with still increasing spatial resolution, is used in the technique referred to as Electron Microprobe Analysis (EMA), Electron Probe Microanalysis (EPMA) or Energy Dispersive Analysis of X-rays (EDAX, EDX) [21]. [Pg.189]

Reiche, I., Yignaud, C., Favre-Quattropani, L., and Menu, M. (2002b). Fluorine analysis in biogenic and geological apatite by analytical transmission electron microscopy and nuclear reaction analysis. Journal of Trace and Microprobe Techniques 20 211-231. [Pg.381]

Some of the disadvantages of the electron-probe method may be overcome, as in other methods, by the use of complementary techniques. Such techniques can complete the results obtained by electron microprobe. For instance, the introduction of a proton microprobe [39], which is much more sensitive (by two orders of magnitude) than the electron microprobe, and may be used with very good results in geochemical and cosmochemical studies. [Pg.453]


See other pages where Electron microprobe technique is mentioned: [Pg.62]    [Pg.169]    [Pg.149]    [Pg.150]    [Pg.349]    [Pg.2498]    [Pg.511]    [Pg.440]    [Pg.138]    [Pg.199]    [Pg.62]    [Pg.169]    [Pg.149]    [Pg.150]    [Pg.349]    [Pg.2498]    [Pg.511]    [Pg.440]    [Pg.138]    [Pg.199]    [Pg.1844]    [Pg.394]    [Pg.117]    [Pg.358]    [Pg.133]    [Pg.35]    [Pg.641]    [Pg.641]    [Pg.641]    [Pg.129]    [Pg.302]    [Pg.343]    [Pg.278]    [Pg.48]    [Pg.86]    [Pg.155]    [Pg.94]    [Pg.305]    [Pg.66]    [Pg.118]   
See also in sourсe #XX -- [ Pg.254 ]

See also in sourсe #XX -- [ Pg.254 ]




SEARCH



Electron microprobe

Electron techniques

Microprobe

Microprobe technique

Microprobes

© 2024 chempedia.info