Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytic conception

When soluble in water, compounds that are aeids, bases, or salts on the above definitions are generally good electrolytes. Thus, hydrochloric acid, sodium hydroxide, and sodium ehloride each behave in solution as if there are two ions per formula unit, and in electrolysis, as if each ion carries a single charge  [Pg.137]

Acetic acid behaves as if it is partly dissociated into two ions according to the equilibrium [Pg.137]

The latter reaetion belongs to the class called hydrolysis (see Chap. 15). [Pg.137]

These facts suggest the association of acidity with the aqueous ion and basicity with the aqueous OH ion. An acidic solution is then one that contains more ions than pure water does and a basic solution one that contains more OH ions. Pure water has a very slight conductivity, attributed to low concentrations of H and OH ions ( 10 M at 25 °C), arising from a small degree of self-ionization  [Pg.138]


The solid polymer electrolyte approach provides enhanced safety, but the poor ambient temperature conductivity excludes their use for battery applications. which require good ambient temperature performance. In contrast, the liquid lithium-ion technology provides better performance over a wider temperature range, but electrolyte leakage remains a constant risk. Midway between the solid polymer electrolyte and the liquid electrolyte is the hybrid polymer electrolyte concept leading to the so-called gel polymer lithium-ion batteries. Gel electrolyte is a two-component system, viz., a polymer matrix... [Pg.202]

The developmental history of the Ni-Cd battery can be traced back to the late 19th and early 20th centuries. The initial work was conducted by Jungner and others, who brought the alkaline electrolytes concept into... [Pg.1897]

First, we will disregard such disturbances and consider the equilibrium potential differences of the most important sensors with pure homogeneous oxoanionic solid electrolytes. Concepts for a solid-state electro-chemistry with electrode potentials of the kind used in Section 25.2 do not appear to be useful here. [Pg.418]

The electrolytic conception of acids and bases can be extended to other ionizing solvents by means of the following definitions ... [Pg.146]

Protic salt electrolyte concepts (i.e., ionic hquid filled PEMs, and, non-leachable PEMs),... [Pg.111]

As we have seen in this chapter steroids have a number of functions in human physiology Cholesterol is a component part of cell mem branes and is found in large amounts in the brain Derivatives of cholic acid assist the digestion of fats in the small intestine Cortisone and its derivatives are involved in maintaining the electrolyte balance in body fluids The sex hormones responsible for mascu line and feminine characteristics as well as numerous aspects of pregnancy from conception to birth are steroids... [Pg.1099]

Russian production may be going to a flow line cell concept (35). In this process, dehydrated camaOite is fed to a chamber where it is mixed with spent electrolyte coming from the electrolytic cells. The spent electrolyte first enters a metal collection chamber, where the molten magnesium is separated. The electrolyte is then enriched with camaOite and any iasoluble impurities are allowed to settle. The enriched electrolyte is then returned to the electrolytic cells. The result is that most of the remaining impurities are removed ia the first electrolytic cell. [Pg.319]

The Dehye-Hbckel theory of electrolytes based on the electric field surrounding each ion forms the basis for modern concepts of electrolyte behavior (16,17). The two components of the theory are the relaxation and the electrophoretic effect. Each ion has an ion atmosphere of equal opposite charge surrounding it. During movement the ion may not be exacdy in the center of its ion atmosphere, thereby producing a retarding electrical force on the ion. [Pg.509]

Hydrogen was recognized as the essential element in acids by H. Davy after his work on the hydrohalic acids, and theories of acids and bases have played an important role ever since. The electrolytic dissociation theory of S. A. Arrhenius and W. Ostwald in the 1880s, the introduction of the pH scale for hydrogen-ion concentrations by S. P. L. Sprensen in 1909, the theory of acid-base titrations and indicators, and J. N. Brdnsted s fruitful concept of acids and conjugate bases as proton donors and acceptors (1923) are other land marks (see p. 48). The di.scovery of ortho- and para-hydrogen in 1924, closely followed by the discovery of heavy hydrogen (deuterium) and... [Pg.32]

We had no good way to predict if they would be liquid, but we were lucky that many were. The class of cations that were the most attractive candidates was that of the dialkylimidazolium salts, and our particular favorite was l-ethyl-3-methylimid-azolium [EMIM]. [EMIMJCl mixed with AICI3 made ionic liquids with melting temperatures below room temperature over a wide range of compositions [8]. We determined chemical and physical properties once again, and demonstrated some new battery concepts based on this well behaved new electrolyte. We and others also tried some organic reactions, such as Eriedel-Crafts chemistry, and found the ionic liquids to be excellent both as solvents and as catalysts [9]. It appeared to act like acetonitrile, except that is was totally ionic and nonvolatile. [Pg.5]

The concept of the fuel cell, that is, a cell in which inert electrodes immersed in an electrolyte could he intimately contacted with a reacting fuel (e.g., hydrogen) and oxidant (e.g., air) and so generate an electric current, was demonstrated in 1839 by Grove and intensively studied by him during the next decade. [Pg.234]

Polarization can be divided into activation polarization and concentration polarization , Activation polarization is an electrochemical reaction that is controlled by the reaction occurring on the metal-electrolyte interface. Figure 4-418 illustrates the concept of activation polarization where hydrogen is being reduced over a zinc surface. Hydrogen ions are adsorbed on the metal surface they pick up electrons from the metal and are reduced to atoms. The atoms combine to... [Pg.1264]

This concept may be invoked to account for electrolyte formation in microcracks in a metal surface or in the re-entrant angle formed by a dust particle and the metal surface. More importantly, it can also explain electrolyte formation in the pores of corrosion product and hence the secondary critical humidity discussed earlier. Ferric oxide gel is known to exhibit capillary condensation characteristic and pore sizes deduced from measurements of its adsorptive capacity are of the right order of magnitude to explain a secondary critical relative humidity as70 7o for rusted steel . [Pg.342]

It is important to realise that whilst complete dissociation occurs with strong electrolytes in aqueous solution, this does not mean that the effective concentrations of the ions are identical with their molar concentrations in any solution of the electrolyte if this were the case the variation of the osmotic properties of the solution with dilution could not be accounted for. The variation of colligative, e.g. osmotic, properties with dilution is ascribed to changes in the activity of the ions these are dependent upon the electrical forces between the ions. Expressions for the variations of the activity or of related quantities, applicable to dilute solutions, have also been deduced by the Debye-Hiickel theory. Further consideration of the concept of activity follows in Section 2.5. [Pg.23]

The great importance of the solubility product concept lies in its bearing upon precipitation from solution, which is, of course, one of the important operations of quantitative analysis. The solubility product is the ultimate value which is attained by the ionic concentration product when equilibrium has been established between the solid phase of a difficultly soluble salt and the solution. If the experimental conditions are such that the ionic concentration product is different from the solubility product, then the system will attempt to adjust itself in such a manner that the ionic and solubility products are equal in value. Thus if, for a given electrolyte, the product of the concentrations of the ions in solution is arbitrarily made to exceed the solubility product, as for example by the addition of a salt with a common ion, the adjustment of the system to equilibrium results in precipitation of the solid salt, provided supersaturation conditions are excluded. If the ionic concentration product is less than the solubility product or can arbitrarily be made so, as (for example) by complex salt formation or by the formation of weak electrolytes, then a further quantity of solute can pass into solution until the solubility product is attained, or, if this is not possible, until all the solute has dissolved. [Pg.26]

The alkaline version of the Mn02 / zinc cell follows a different concept because it turns the construction of the Leclanche cell completely around now the cathode (Mn02 + carbon) forms a hollow cylinder contacting the inner wall of the cell container (steel) along its outer surface. The inner cavity has to accommodate anode, electrolyte, separator, and current collector. Usually, the separator forms a basket, which is automatically inserted and pre-... [Pg.200]

With regard to rechargeable cells, a number of laboratory studies have assessed the applicability of the rocking-chair concept to PAN-EC/PC electrolytes with various anode/cathode electrode couples [121-123], Performance studies on cells of the type Li°l PAN-EC/PC-based electrolyte lLiMn20 and carbon I PAN-EC/PC-based electrolyte ILiNi02 show some capacity decline with cycling [121]. For cells with a lithium anode, the capacity decay can be attributed mainly to passivation and loss of lithium by its reaction with... [Pg.516]

Gozdz et al. (of Bellcore) [25] recognized that poly (vinylidene difluoride) hexafluoropropylene (PVDF HFP) copolymers could form gels with organic solvents and developed an entire battery based on this concept. Typically, the gel separator is 50 pm thick and comprises 60wt. % polymer. In the Bellcore process the separator is laminated to the electrodes under pressure at elevated temperature. The use of the PVDF HFP gelling agent increases the resistivity of the electrolyte by about five times which limits the rate capability of such batteries. [Pg.557]

The concept of a promoter can also be extended to the case of substances which enhance the performance of an electrocatalyst by accelerating the rate of an electrocatalytic reaction. This can be quite important for the performance, e.g., of low temperature (polymer electrolyte membrane, PEM) fuel cells where poisoning of the anodic Pt electrocatalyst (reaction 1.7) by trace amounts of strongly adsorbed CO poses a serious problem. Such a promoter which when added to the Pt electrocatalyst would accelerate the desired reaction (1.5 or 1.7) could be termed an electrocatalytic promoter, or electropromoter, but this concept will not be dealt with in the present book, where the term promoter will always be used for substances which enhance the performance of a catalyst. [Pg.10]

Electrochemical promotion or NEMCA is the main concept discussed in this book whereby application of a small current (1-104 pA/cm2) or potential ( 2 V) to a catalyst, also serving as an electrode (electrocatalyst) in a solid electrolyte cell, enhances its catalytic performance. The phenomenology, origin and potential practical applications of electrochemical promotion, as well as its similarities and differences with classical promotion and metal-support interactions, is the main subject of this book. [Pg.10]

It is worth emphasizing that although overpotentials are usually associated with electrode-electrolyte interfaces, in reality they refer to, and are measured as, deviations of the potential (

associated with an electrode and not with an electrode-electrolyte interface, although the nature of this interface will, in general, dictate the magnitude of the measured overpotential. [Pg.122]


See other pages where Electrolytic conception is mentioned: [Pg.122]    [Pg.137]    [Pg.9]    [Pg.14]    [Pg.178]    [Pg.442]    [Pg.122]    [Pg.137]    [Pg.9]    [Pg.14]    [Pg.178]    [Pg.442]    [Pg.2718]    [Pg.580]    [Pg.584]    [Pg.122]    [Pg.345]    [Pg.511]    [Pg.585]    [Pg.2409]    [Pg.451]    [Pg.456]    [Pg.421]    [Pg.868]    [Pg.657]    [Pg.596]    [Pg.63]    [Pg.177]    [Pg.196]    [Pg.56]    [Pg.62]    [Pg.147]    [Pg.99]   


SEARCH



Electrolyte Solutions and Historical Concept of Ion-Pairing

Electrolyte basic concepts

Electrolytes Elementary Concepts

© 2024 chempedia.info