Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relative humidities, critical

Some nonhygroscopic materials such as metals, glass, and plastics, have the abiUty to capture water molecules within microscopic surface crevices, thus forming an invisible, noncontinuous surface film. The density of the film increases as the relative humidity increases. Thus, relative humidity must be held below the critical point at which metals may etch or at which the electrical resistance of insulating materials is significantly decreased. [Pg.357]

Anhydrous sodium tripolyphosphate is slow to hydrate in contact with the atmosphere under normal ambient conditions and generally remains free-flowing. If the relative humidity is below a critical relative humidity, which is different for both anhydrous forms of STP and dependent on temperature, hydration does not take place. For prolonged storage at room temperature, relative humidities above ca 60% in the air result in water absorption. For shorter periods, high levels of humidity can be tolerated. However, even at higher humidities, the amount of water absorbed is small. The heats evolved from vapor hydration of STP-I and -II have been estimated at 343 and 334 kj /mol (82.0 and 79.9 kcal/mol), respectively (25). [Pg.337]

Relative humidity can have a significant impact on drying behavior and film quahty. Water-based formulations that perform weU when apphed under dry conditions may be deficient under high humidity apphcation conditions. The rate of water evaporation is much slower at high humidity, but solvent evaporation continues. This results in solvent depletion during the critical phases of film formation and consequent poor film development. [Pg.279]

The critical parameters of ethylene oxide steriliza tion are temperature, time, gas concentration, and relative humidity. The critical role of humidity has been demonstrated by a number of studies (11,18,19). Temperature, time, and gas concentration requirements are dependent not only on the bioburden, but also on the type of hardware and gas mixture used. If cycle development is not possible, as in the case of hospital steriliza tion, the manufacturer s recommendations should be followed. [Pg.409]

Because the mechanical properties of hydrophilic fibers are critically dependent on moisture regain, it is vital that such fibers be tested under constant conditions of temperature and humidity. Standard conditions used in the textile industry are 65% relative humidity and 21°C (1,2,21,96). ASTM D1909, D2118, and D2720 Hst accepted commercial moisture regain values used in the buying and selling of fibers. [Pg.456]

Critical Humidity—the relative humidity (RH) at and above which the atmospheric corrosion rate of a metal increases significantly. [Pg.47]

An air compressor is required to raise 4,600 scfm of atmospheric air to 100 psig. The ambient summer temperature is 95°F dry bulb for two months and lower for the balance of the operating time. The air usually has a relative humidity of 65%, but during the wet season, the humidity may be 100% while the temperature is 95°F. The elevation is sea level the barometer 14.7 psia. The continuity of air supply is very critical. [Pg.500]

Basis. 100% relative humidity at 95°F due to critical service. (For other applications an R.H. of 80% might be quite satisfactory.)... [Pg.500]

The main factor in causing filiform corrosion is the relative humidity of the atmosphere, and if this is below 65% (the critical relative humidity for the atmospheric corrosion of most metals, see Section 2.2) it will not occur. As the relative humidity increases the thickness of the filaments increases at 65-80% relative humidity they are very thin, at 80-95% relative humidity they are much wider and at approximately 95% relative humidity they broaden sufficiehtly to form blisters. [Pg.170]

Critical relative humidity The primary value of the critical relative humidity denotes that humidity below which no corrosion of the metal in question takes place. However, it is important to know whether this refers to a clean metal surface or one covered with corrosion products. In the latter case a secondary critical humidity is usually found at which the rate of corrosion increases markedly. This is attributed to the hygroscopic nature of the corrosion product (see later). In the case of iron and steel it appears that there may even be a tertiary critical humidity . Thus at about 60% r.h. rusting commences at a very slow rate (primary value) at 75-80% r.h. there is a sharp increase in corrosion rate probably attributable to capillary condensation of moisture within the rust . At 90% r.h. there is a further increase in rusting rate corresponding to the vapour pressure of saturated ferrous sulphate solution , ferrous sulphate being identifiable in rust as crystalline agglomerates. The primary critical r.h. for uncorroded metal surfaces seems to be virtually the same for all metals, but the secondary values vary quite widely. [Pg.340]

This concept may be invoked to account for electrolyte formation in microcracks in a metal surface or in the re-entrant angle formed by a dust particle and the metal surface. More importantly, it can also explain electrolyte formation in the pores of corrosion product and hence the secondary critical humidity discussed earlier. Ferric oxide gel is known to exhibit capillary condensation characteristic and pore sizes deduced from measurements of its adsorptive capacity are of the right order of magnitude to explain a secondary critical relative humidity as70 7o for rusted steel . [Pg.342]

This important fact was first demonstrated by Vernon in a series of classical experiments, some of which are summarised graphically in Fig. 3.1. He showed that rusting is minimal in pure air of less than 100 l o relative humidity but that in the presence of minute concentrations of impurities, such as sulphur dioxide, serious rusting can occur without visible precipitation of moisture once the relative humidity of the air rises above a critical and comparatively low value. This value depends to some extent upon the nature of the atmospheric pollution, but, when sulphur dioxide is present, it is in the region of 70-80%. Below the critical humidity, rusting is inappreciable, even in polluted air. [Pg.490]

The presence of moisture on steel above the critical humidity but below the saturation point may be caused by an adsorption mechanism or by the presence of particles of deliquescent salts on the surface. Once rusting has begun, the composition of the rust already formed will influence the relative humidity at which further rusting will occur, because rusts formed in polluted atmospheres contain hygroscopic salts. The method by which moisture reaches the surface is probably less important, however, than the length... [Pg.490]

The low rates of rusting observed at Khartoum, Abisko, Delhi, Basrah and Singapore are primarily associated with the absence of serious pollution. Moreover, at most of them the relative humidity is low, e.g. at Khartoum the relative humidity lies below the critical value for rusting throughout the whole year. [Pg.494]

R = temperature, absolute, degrees Rankin r = rc = ratio of back pressure to upstream pressure, P2/Pi, or critical pressure ratio, Pc/Pi rj = relative humidity, percent S = maximum allowable stress in vessel wall, from ASME Code, psi., UCS-23.1-23.5 UHA-23, UHT-23... [Pg.539]

The critical relative humidity of Specification grade K nitrate is 91.7% at 20° purified material, 91.8% at 26.2°... [Pg.218]

A deliquescent material takes up moisture freely in an atmosphere with a relative humidity above a specific, well-defined critical point. That point for a given substance is defined as the critical relative humidity (RH0). Relative humidity (RH) is defined as the ratio of water vapor pressure in the atmosphere divided by water vapor pressure over pure water times 100% [RH = (PJP0) X 100%]. Once moisture is taken up by the material, a concentrated aqueous solution of the deliquescent solute is formed. The mathematical models used to describe the rate of moisture uptake involve both heat and mass transport. [Pg.698]

An example of a vapor pressure profile is shown in Figure 11, where it is assumed that the relative humidity within the chamber is 80%, the critical relative humidity of the solid is 40%, and the thickness of the diffusion layer (8) is 1 cm. From the figure, note that the relative humidity profile is linear and we could have made the simplifying assumption that the convective term is negligible. By ignoring the convective term, Eq. (42) simplifies to... [Pg.717]

The effect of relative humidity and temperature on the physical and structural properties of the 1 1 isopropanol solvatomorph of warfarin has been studied [58], Below the critical relative humidity of 60-68% the solid is not hygroscopic, but becomes deliquescent at higher values of relative humidity without exchange of water for isopropanol. Storage of the solvate-morph at elevated temperatures causes formation of an amorphous solid owing to loss of isopropanol, which may proceed through an intermediate crystalline phase. [Pg.270]


See other pages where Relative humidities, critical is mentioned: [Pg.183]    [Pg.243]    [Pg.183]    [Pg.183]    [Pg.16]    [Pg.183]    [Pg.243]    [Pg.183]    [Pg.183]    [Pg.16]    [Pg.205]    [Pg.51]    [Pg.220]    [Pg.220]    [Pg.221]    [Pg.226]    [Pg.230]    [Pg.231]    [Pg.277]    [Pg.426]    [Pg.354]    [Pg.288]    [Pg.139]    [Pg.421]    [Pg.539]    [Pg.491]    [Pg.968]    [Pg.220]    [Pg.221]    [Pg.50]    [Pg.153]    [Pg.345]    [Pg.700]   
See also in sourсe #XX -- [ Pg.2 , Pg.36 ]

See also in sourсe #XX -- [ Pg.2 , Pg.36 ]




SEARCH



Critical humidity

Humidity, relative

© 2024 chempedia.info