Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrochloric acid, electrolysis

Electrolysis of hydrochloric acid yields hydrogen at the cathode and oxygen at the anode from the dilute acid, but chlorine at the anode (of carbon) from the concentrated acid. Electrolysis of the concentrated acid is used on the large scale to recover chlorine. [Pg.331]

Chlorine from HCl. Most organic chlorination reactions consume only half the CI2 to produce the desired product the other half is converted to HCl. Depending on demand and supply of CI2 vs HCl, chlorine recovery from hydrochloric acid is sometimes attractive. Two commercial routes are available electrolysis and oxidation (69). [Pg.503]

Aqueous Hydrochloric Acid. Muriatic acid consumption in 1993 was about 1.57 million metric tons (100% basis). The largest captive use of aqueous HCl is for brine acidification prior to electrolysis in chlorine/caustic cells and the largest merchant markets for HCl are steel pickling and oil-well acidizing, which accounted for 25 and 16% of merchant production, respectively, during 1989. [Pg.451]

Lithium Chloride. Lithium chloride [7447- 1-8], LiCl, is produced from the reaction of Hthium carbonate or hydroxide with hydrochloric acid. The salt melts at 608°C and bods at 1382°C. The 41-mol % LiCl—59-mol % KCl eutectic (melting point, 352°C) is employed as the electrolyte in the molten salt electrolysis production of Hthium metal. It is also used, often with other alkaH haHdes, in brazing flux eutectics and other molten salt appHcations such as electrolytes for high temperature Hthium batteries. [Pg.225]

Orange II also has been reduced with zinc dust and hydrochloric acid, by electrolysis, and by catalytic hydrogenation. [Pg.14]

Reduction, see also Hydrogenation electrolytic, see Electrolysis of anisoin to deoxyanisoin by tin and hydrochloric acid, 40, 16 of aromatic compounds to dihydroaromatics by sodium and ammonia, 43, 23... [Pg.121]

Recently, rhodium and ruthenium-based carbon-supported sulfide electrocatalysts were synthesized by different established methods and evaluated as ODP cathodic catalysts in a chlorine-saturated hydrochloric acid environment with respect to both economic and industrial considerations [46]. In particular, patented E-TEK methods as well as a non-aqueous method were used to produce binary RhjcSy and Ru Sy in addition, some of the more popular Mo, Co, Rh, and Redoped RuxSy catalysts for acid electrolyte fuel cell ORR applications were also prepared. The roles of both crystallinity and morphology of the electrocatalysts were investigated. Their activity for ORR was compared to state-of-the-art Pt/C and Rh/C systems. The Rh Sy/C, CojcRuyS /C, and Ru Sy/C materials synthesized by the E-TEK methods exhibited appreciable stability and activity for ORR under these conditions. The Ru-based materials showed good depolarizing behavior. Considering that ruthenium is about seven times less expensive than rhodium, these Ru-based electrocatalysts may prove to be a viable low-cost alternative to Rh Sy systems for the ODC HCl electrolysis industry. [Pg.321]

Ziegelbauer JM, Guild AF, O Laoire C, Urgeghe C, Allen RJ, Mukerjee S (2007) Chalcogenide electrocatalysts for oxygen-depolarized aqueous hydrochloric acid electrolysis. Electrochim Acta 52 6282-6294... [Pg.344]

The theory of electrolysis is continued with one additional example in which a solution of hydrochloric acid contained in a container is considered. The dissociation of acid will cause the solution to have chlorine and hydrogen ions. It is shown below ... [Pg.672]

To conclude this section, reference may be drawn to what is called the Placid process for recycling lead from batteries. Placid denotes the leaching of lead in warm, slightly acidic, hydrochloric acid brine to form soluble lead chloride. Lead is won from the lead chloride on the cathode of an electro winning cell and is collected. Chloride anions are released simultaneously, but then react immediately with hydrogen ions that have been produced stoichio-metrically from electrolysis of water in the anolyte and passed into the catholyte through a membrane. The hydrochloric acid that is formed is returned as a make-up content to the leaching bath. [Pg.763]

Kenneth Warren. Chemical Foundations The Alkali Industry in Britain to 1926. Oxford Clarendon Press, 1980. Source for family shops changing to giant factories Liebig quotation plant sources of alkalis Leblanc s experiment Victorians like Leblanc factories reduction in hydrochloric acid pollution cost of pollution abatement electrolysis and 3 raw material units make 1 unit of product. [Pg.205]

Encouraging laboratory experiments since 1994 with oxygen-depolarised cathodes (ODC) in chlor-alkali as well as hydrochloric acid electrolysis motivated the development of this technique up to the industrial scale. Based on the predictions of the theory, the reduction of cell voltage could be expected up to 1 V (Fig. 4.1) for both applications. Early on, the proper choice and improvement of ODC, deriving mainly from the DeNora group, led to results with voltages as predicted in short tests as well as in endurance tests conducted over dozens of months at the Bayer endurance test facilities. [Pg.63]

Improved next-generation ODC with a catalyst based on rhodium [6] promises an even more simplified plant concept. This is due to the fact that this type of ODC does not require polarisation during shut-down as an inert cathode is no longer necessary. The plant can simply be put at stand-by where the anode side, as well as the HC1 circuit, remains pressurised under chlorine saturation. Therefore, re-starting the operation is very simple and the chlorine supply is derived directly from the electrolysis and liquid chlorine evaporation is no longer necessary. Instead, with a liquid chlorine buffer, the system can be re-started from the hydrochloric acid storage tank. [Pg.69]

Oxygen-depolarised cathode for aqueous hydrochloric acid electrolysis... [Pg.128]

In conventional hydrochloric acid electrolysis [1], aqueous hydrochloric acid (HClaq) is electrolysed in a cell, constructed basically from graphite, which is divided by a porous diaphragm or a membrane. The overall reaction is... [Pg.128]

The GDE for hydrochloric acid electrolysis is characterised by micro-scale hydraulic problems connected with the competition between the gas phase (oxygen), which has to diffuse towards the catalyst, and the liquid phase (water), which must be released. This competition is managed basically by a flow-through structure provided with hydrophobic channels of relatively large diameter. These are formed from PTFE (the binder of the structure) and catalyst particles and account for regulating the gas phase. Hydrophilic channels with smaller diameters (one order of magnitude smaller), which are located in the micro-porous carbon particles of the catalyst support (e.g. Vulcan XC-72), act as water absorbers. A consequence of the electrolysis process is that the catalyst itself is partially covered by liquid. This reduces its effectiveness and accounts for extra voltage. [Pg.132]

Balko, E.N. (1979) SPE hydrochloric acid electrolysis cells performances. Cell Configuration, Oronzio DeNora Symposium - Chlorine Technology. See United States Patent No. 4,311,568 and United States Patent No. 4,294,671. [Pg.141]

After extensive research and several tests, the option selected was recycling hypochlorite to the feed brine of the electrolysis cells. For this purpose, hypochlorite feed pipes were manufactured and the hydrochloric acid feed capacity to the brine degassing tanks was enlarged. [Pg.192]

Predict the products from the electrolysis of a 1 mol/L solution of hydrochloric acid. [Pg.561]

The electrolysis of asymmetric ketones 43 led to the formation of isomers and stereoisomers. Kinetic measurements for the formation of ketimine 43 in saturated ammoniacal methanol indicated that at least 12 h of the reaction time were required to reach the equilibrium in which approximately 40% of 42 was converted into the ketimine 43. However, the electrolysis was completed within 2.5 h and the products 44 were isolated in 50-76% yields. It seems that the sluggish equilibrium gives a significant concentration of ketimine 43 which is oxidized by the 1 generated at the anode, and the equilibrium is shifted towards formation of the product 44. 2,5-Dihydro-IH-imidazols of type 44, which were unsubstituted on nitrogen, are rare compounds. They can be hydrolyzed with hydrochloric acid to afford the corresponding a-amino ketones as versatile synthetic intermediates for a wide variety of heterocyclic compounds, that are otherwise difficult to prepare. [Pg.112]

Strontium metal is not found in its elemental state in nature. Its salts and oxide compounds constitute only 0.025% of the Earths crust. Strontium is found in Mexico and Spain in the mineral ores of strontianite (SrCO ) and celestite (SrSO ). As these ores are treated with hydrochloric acid (HCl), they produce strontium chloride (SrCy that is then used, along with potassium chloride (KCl), to form a eutectic mixture to reduce the melting point of the SrCl, as a molten electrolyte in a graphite dish-shaped electrolysis apparatus. This process produces Sr cations collected at the cathode, where they acquire electrons to form strontium metal. At the same time, Cl anions give up electrons at the anode and are released as chlorine gas Cl T. [Pg.77]

In 1787 William Cruikshank (1745-1795) isolated, but did not identify, strontium from the mineral strontianite he examined. In 1790 Dr. Adair Crawford (1748—1794), an Irish chemist, discovered strontium by accident as he was examining barium chloride. He found a substance other than what he expected and considered it a new mineral. He named the new element strontium and its mineral strontianite after a village in Scotland. In 1808 Sir Humphry Davy treated the ore with hydrochloric acid, which produced strontium chloride. He then mixed mercury oxide with the strontium chloride to form an amalgam alloy of the two metals that collected at the cathode of his electrolysis apparatus. He heated the resulting substance to vaporize the mercury, leaving the strontium metal as a deposit. [Pg.77]

Reduction of a,/3-unsaturated to saturated ketones was further achieved by electrolysis in a neutral medium using copper or lead cathodes (yields 55-75%) [766], with lithium in propylamine (yields 40-65%) [876], with potassium-graphite clathrate CgK (yields 57-85%) [807], and with zinc in acetic acid (yield 87%) [688]. Reduction with amalgamated zinc in hydrochloric acid (Clemmensen reduction) usually reduces both functions [877]. [Pg.120]

Reduction of lactams to amines resembles closely the reduction of amides except that catalytic hydrogenation is much easier and was accomplished even under mild conditions. a-Norlupinone (l-azabicyclo[4.4.0]-2-oxodecane) was converted quantitatively to norlupinane (l-azabicyclo[4.4.0]decane) over platinum oxide in 1.25% aqueous hydrochloric acid at room temperature and atmospheric pressure after 16 hours [1122]. Reduction of the same compound by electrolysis in 50% sulfuric acid over lead cathode gave 70% yield [1122]. [Pg.168]


See other pages where Hydrochloric acid, electrolysis is mentioned: [Pg.504]    [Pg.450]    [Pg.27]    [Pg.67]    [Pg.202]    [Pg.186]    [Pg.195]    [Pg.766]    [Pg.812]    [Pg.338]    [Pg.517]    [Pg.517]    [Pg.543]    [Pg.321]    [Pg.80]    [Pg.611]    [Pg.678]    [Pg.186]    [Pg.160]    [Pg.128]    [Pg.536]    [Pg.333]    [Pg.152]    [Pg.106]    [Pg.179]    [Pg.78]   
See also in sourсe #XX -- [ Pg.49 , Pg.114 , Pg.115 , Pg.118 , Pg.119 ]




SEARCH



Acid electrolysis

Acids hydrochloric acid

Aqueous hydrochloric acid electrolysis

Electrolysis of concentrated hydrochloric acid

Electrolysis of hydrochloric acid

Hydrochloric

Hydrochloric acid

Hydrochloric electrolysis

© 2024 chempedia.info