Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strontium elements

Figure 12. Comparison of barium-strontium element ratios generated by LA-ICP-MS (la) and ICP-ES (lb) for a sample of individuals from the Paloma, Peru archaeological site, and with other ICP-ES data (2-14). All ICP-ES data were generated by Burton and Price (38). Figure 12. Comparison of barium-strontium element ratios generated by LA-ICP-MS (la) and ICP-ES (lb) for a sample of individuals from the Paloma, Peru archaeological site, and with other ICP-ES data (2-14). All ICP-ES data were generated by Burton and Price (38).
We tested this data acquisition method by first ablating bracketing concentration standard glasses that had been determined from previous measurements. All the samples in this analysis had total strontium elemental concentrations between 95 and 350 parts per million strontium. We then collected 150-300 one second ion count packets for MSr, Sr, 87 Sr and 88Sr, plus the instantaneous ratio of each isotope to Sr (Figure 3). [Pg.305]

Strontium, element number 38, has a density of 2.63 g/cm3 and is the 16th most abundant element on Earth. Barium, element number 56, has a density of 3.51 g/cm3 and ranks 14th in abundance. Both elements are silvery-colored metals. Because alkaline earths react so readily with any water in the environment to form ions and compounds, neither element would ever be found as the native metal. In all of their ores, they occur as +2 ions. The principal sources of the two elements are the minerals celestite (SrS04), strontianite (SrC03), and barite (BaS04). [Pg.130]

EINECS 231-133-4 HSDB 2545 Strontium Strontium, elemental. Metallic element alloys of strontium used in electron tubes as a getter to combine chemically with active gases and to hold inxtive gases by adsorption. Used in fireworks and trxer bullets, mp = 757° bp = 1366° d = 2.6 reacts with oxygen. Atomergic Chemetals Degussa AG Noah Chem. [Pg.587]

Group IIB and know that this means the group of elements zine. cadmium and mercury, whilst Group IIA refers to the alkaline earth metals beryllium, magnesium, calcium, barium and strontium. [Pg.13]

The elements in Group II of the Periodic Table (alkaline earth metals) are. in alphabetical order, barium (Ba). beryllium (Be), calcium (Ca). magnesium (Mg), radium (Ra) and strontium (Sr). [Pg.136]

Selective Reduction. In aqueous solution, europium(III) [22541 -18-0] reduction to europium(II) [16910-54-6] is carried out by treatment with amalgams or zinc, or by continuous electrolytic reduction. Photochemical reduction has also been proposed. When reduced to the divalent state, europium exhibits chemical properties similar to the alkaline-earth elements and can be selectively precipitated as a sulfate, for example. This process is highly selective and allows production of high purity europium fromlow europium content solutions (see Calcium compounds Strontiumand strontium compounds). [Pg.544]

In general, the chemistry of inorganic lead compounds is similar to that of the alkaline-earth elements. Thus the carbonate, nitrate, and sulfate of lead are isomorphous with the corresponding compounds of calcium, barium, and strontium. In addition, many inorganic lead compounds possess two or more crystalline forms having different properties. For example, the oxides and the sulfide of bivalent lead are frequendy colored as a result of their state of crystallisation. Pure, tetragonal a-PbO is red pure, orthorhombic P PbO is yeUow and crystals of lead sulfide, PbS, have a black, metallic luster. [Pg.67]

Some elements found in body tissues have no apparent physiological role, but have not been shown to be toxic. Examples are mbidium, strontium, titanium, niobium, germanium, and lanthanum. Other elements are toxic when found in greater than trace amounts, and sometimes in trace amounts. These latter elements include arsenic, mercury, lead, cadmium, silver, zirconium, beryUium, and thallium. Numerous other elements are used in medicine in nonnutrient roles. These include lithium, bismuth, antimony, bromine, platinum, and gold (Eig. 1). The interactions of mineral nutrients with... [Pg.373]

There are three general types of radiopharmaceuticals elemental radionucHdes or simple compounds, radionucHde complexes, and radiolabeled biologically active molecules. Among the first type are radionucHdes in their elemental form such as Kr and Xe or Xe, and simple aqueous radionucHde solutions such as or I-iodide, Tl-thaUous chloride, Rb-mbidium(I) chloride [14391-63-0] Sr-strontium(II) chloride, and Tc-pertechnetate. These radiopharmaceuticals are either used as obtained from the manufacturer in a unit dose, ie, one dose for one patient, or dispensed at the hospital from a stock solution that is obtained as needed from a chromatographic generator provided by the manufacturer. [Pg.477]

Strontium [7440-24-6] Sr, is in Group 2 (IIA) of the Periodic Table, between calcium and barium. These three elements are called alkaline-earth metals because the chemical properties of the oxides fall between the hydroxides of alkaU metals, ie, sodium and potassium, and the oxides of earth metals, ie, magnesium, aluminum, and iron. Strontium was identified in the 1790s (1). The metal was first produced in 1808 in the form of a mercury amalgam. A few grams of the metal was produced in 1860—1861 by electrolysis of strontium chloride [10476-85-4]. [Pg.472]

Barium is a member of the aLkaline-earth group of elements in Group 2 (IIA) of the period table. Calcium [7440-70-2], Ca, strontium [7440-24-6], Sr, and barium form a closely aUied series in which the chemical and physical properties of the elements and thek compounds vary systematically with increa sing size, the ionic and electropositive nature being greatest for barium (see Calcium AND CALCIUM ALLOYS Calcium compounds Strontium and STRONTIUM compounds). As size increases, hydration tendencies of the crystalline salts increase solubiUties of sulfates, nitrates, chlorides, etc, decrease (except duorides) solubiUties of haUdes in ethanol decrease thermal stabiUties of carbonates, nitrates, and peroxides increase and the rates of reaction of the metals with hydrogen increase. [Pg.475]

The classical analytical method of deterruination of barium ion is gravimetric, by precipitating and weighing insoluble barium sulfate. Barium chromate, which is more insoluble than strontium chromate in a slightly acidic solution, gives a fairly good separation of the two elements. [Pg.484]

Calcium [7440-70-2J, Ca, a member of Group 2 (IIA) of the Periodic Table between magnesium and strontium, is classified, together with barium and strontium, as an alkaline-earth metal and is the lightest of the three. Calcium metal does not occur free in nature however, in the form of numerous compounds, it is the fifth most abundant element constituting 3.63% of the earth s cmst. [Pg.399]

The chemical identities of the fission products determine their subsequent redistribution, those elements which are in the gaseous state at the temperature of the operation migrating to the cooler exterior of the fuel rods, and die less voltile elements undergoing incorporation in the fuel rod in solid solution. Thus caesium and iodine migrate to the gas fill which sunounds the fuel rod, and elements such as the rare earths and zirconium are accommodated in solid solution in UO2 without significant migration along the fuel rod radius. Strontium and barium oxidize to form separate islands which can be seen under the microscope. [Pg.249]

Consider the elements oxygen, fluorine, argon, sulfur, potassium, and strontium. From this group of elements, which ones fit the descriptions below ... [Pg.48]

Exercises 21-1 and 21-2 pose some of the simplest questions we can ask about the alkaline earths. The periodic table arranges in a column elements having similar electron configurations. We can expect elements on the left side of the periodic table to be metals (as magnesium is). Furthermore, we can expect that the elements in a given column will be more like each other than they will be like elements in adjacent columns. Thus, when we find that the chemistry of magnesium is almost wholly connected with the behavior of the dipositive magnesium ion, Mg+l, we can expect a similar situation for calcium, and for strontium, and for each of the other alkaline earth elements. This proves to be so. [Pg.378]

Heating with the following solids, their fusions, or vapours (a) oxides, peroxides, hydroxides, nitrates, nitrites, sulphides, cyanides, hexacyano-ferrate(III), and hexacyanoferrate(II) of the alkali and alkaline-earth metals (except oxides and hydroxides of calcium and strontium) (b) molten lead, silver, copper, zinc, bismuth, tin, or gold, or mixtures which form these metals upon reduction (c) phosphorus, arsenic, antimony, or silicon, or mixtures which form these elements upon reduction, particularly phosphates, arsenates,... [Pg.95]

In 1817 Dobereiner found that if certain elements were combined with oxygen in binary compounds, a numerical relationship could be discerned among the equivalent weights of these compounds. Thus when oxides of calcium, strontium, and barium were considered, the equivalent weight of strontium oxide was approximately the mean of those of calcium oxide and barium oxide. The three elements in question, strontium, calcium, and barium were said to form a triad. [Pg.119]

FIGURE 14.19 The elements of Croup 2 (a) beryllium (b) magnesium (c) calcium id) strontium and (c) barium. The four central elements of the group (magnesium through barium) were discovered bv I lumphry Davy in a single year (1 808). The two outer elements were discovered later beryllium in 1828 (by Friedrich Wohler) and radium (which is not shown here) in 1898 (by Pierre and Marie Curie). [Pg.713]

Half-lives span a very wide range (Table 17.5). Consider strontium-90, for which the half-life is 28 a. This nuclide is present in nuclear fallout, the fine dust that settles from clouds of airborne particles after the explosion of a nuclear bomb, and may also be present in the accidental release of radioactive materials into the air. Because it is chemically very similar to calcium, strontium may accompany that element through the environment and become incorporated into bones once there, it continues to emit radiation for many years. About 10 half-lives (for strontium-90, 280 a) must pass before the activity of a sample has fallen to 1/1000 of its initial value. Iodine-131, which was released in the accidental fire at the Chernobyl nuclear power plant, has a half-life of only 8.05 d, but it accumulates in the thyroid gland. Several cases of thyroid cancer have been linked to iodine-131 exposure from the accident. Plutonium-239 has a half-life of 24 ka (24000 years). Consequently, very long term storage facilities are required for plutonium waste, and land contaminated with plutonium cannot be inhabited again for thousands of years without expensive remediation efforts. [Pg.832]

The elements Na, K, Cl, SO, Br, B, and F are the most conservative major elements. No significant variations in the ratios of these elements to chlorine have been demonstrated. Strontium has a small (< 0.5%) depletion in the euphotic zone (Brass and Turekian, 1974) possibly due to the plankton Acantharia, which makes its shell from SrS04 (celestite). Calcium has been known since the 19th century to be about 0.5% enriched in the deep sea relative to surface waters. Alkalinity (HCOf") also shows a deep enrichment. These elements are controlled by the formation... [Pg.259]


See other pages where Strontium elements is mentioned: [Pg.2520]    [Pg.3850]    [Pg.116]    [Pg.2520]    [Pg.3850]    [Pg.116]    [Pg.188]    [Pg.55]    [Pg.137]    [Pg.91]    [Pg.348]    [Pg.539]    [Pg.285]    [Pg.475]    [Pg.194]    [Pg.283]    [Pg.109]    [Pg.647]    [Pg.551]    [Pg.39]    [Pg.171]    [Pg.440]    [Pg.758]    [Pg.793]    [Pg.116]    [Pg.123]    [Pg.44]    [Pg.712]    [Pg.286]    [Pg.380]   
See also in sourсe #XX -- [ Pg.68 ]

See also in sourсe #XX -- [ Pg.68 ]




SEARCH



© 2024 chempedia.info