Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrodes fundamental

T. Ruzgas, E. Csuregi, J. Emniius, L. Gorton, and G. Marko-Varga, Peroxidase-modified electrodes, fundamentals and applications. Anal. Chim. Acta 330, 123-138 (1996). [Pg.458]

While many of the standard electroanalytical techniques utilized with metal electrodes can be employed to characterize the semiconductor-electrolyte interface, one must be careful not to interpret the semiconductor response in terms of the standard diagnostics employed with metal electrodes. Fundamental to our understanding of the metal-electrolyte interface is the assumption that all potential applied to the back side of a metal electrode will appear at the metal electrode surface. That is, in the case of a metal electrode, a potential drop only appears on the solution side of the interface (i.e., via the electrode double layer and the bulk electrolyte resistance). This is not the case when a semiconductor is employed. If the semiconductor responds in an ideal manner, the potential applied to the back side of the electrode will be dropped across the internal electrode-electrolyte interface. This has two implications (1) the potential applied to a semiconducting electrode does not control the electrochemistry, and (2) in most cases there exists a built-in barrier to charge transfer at the semiconductor-electrolyte interface, so that, electrochemical reversible behavior can never exist. In order to understand the radically different response of a semiconductor to an applied external potential, one must explore the solid-state band structure of the semiconductor. This topic is treated at an introductory level in References 1 and 2. A more complete discussion can be found in References 3, 4, 5, and 6, along with a detailed review of the photoelectrochemical response of a wide variety of inorganic semiconducting materials. [Pg.856]

Zeolites have been also used in the production of fuel cell electrodes, fundamentally as catalyst supports for metals such as Ag, Pd, Rh, Pt, Ru, and Ni [174], Besides, zeolite membranes have been used for the separation of the anode and the cathode sections of a fuel cell, because they allow the transfer of ions through it, for example, to carry an electric current in methanol fuel cells using a basic electrolyte such as carbonate, where the zeolite prevents the escape of methanol [174,179],... [Pg.414]

In addition to the ones listed above, there are other relative dimensions and events that are associated with specific phenomena, for example, relative carrier depletion in the directional growth of pores on a semiconductor electrode. Fundamentally, the relativity of these dimensions and events are associated with the relativity of... [Pg.449]

Ruzgas T, Csoregi E, Emneus J et al. Peroxidase-modified electrodes Fundamentals and application. Analytica Chimica Acta 1996 330 123-138. [Pg.189]

Luminescence has been used in conjunction with flow cells to detect electro-generated intennediates downstream of the electrode. The teclmique lends itself especially to the investigation of photoelectrochemical processes, since it can yield mfonnation about excited states of reactive species and their lifetimes. It has become an attractive detection method for various organic and inorganic compounds, and highly sensitive assays for several clinically important analytes such as oxalate, NADH, amino acids and various aliphatic and cyclic amines have been developed. It has also found use in microelectrode fundamental studies in low-dielectric-constant organic solvents. [Pg.1948]

A different ion guide is the ion tunnel, which also uses only RF fields to transmit ions. It is not a rod device but consists of a series of concentric circular electrodes. It is perhaps best described as operating like a series of ion traps. This chapter gives details of some of the fundamental characteristics of rod-type transmission guides (multipoles). [Pg.372]

The fundamental parameters in the two main methods of achieving ignition are basically the same. Recent advances in the field of combustion have been in the development of mathematical definitions for some of these parameters. For instance, consider the case of ignition achieved by means of an electric spark, where electrical energy released between electrodes results in the formation of a plasma in which the ionized gas acts as a conductor of electricity. The electrical energy Hberated by the spark is given by equation 2 (1), where V = the potential, V 7 = the current. A 0 = the spark duration, s and t = time, s. [Pg.516]

This leads to the fundamental concept that irrespective of the number of electrode processes or whether they occur on one or more than one electrode surface... [Pg.81]

Over the years the original Evans diagrams have been modified by various workers who have replaced the linear E-I curves by curves that provide a more fundamental representation of the electrode kinetics of the anodic and cathodic processes constituting a corrosion reaction (see Fig. 1.26). This has been possible partly by the application of electrochemical theory and partly by the development of newer experimental techniques. Thus the cathodic curve is plotted so that it shows whether activation-controlled charge transfer (equation 1.70) or mass transfer (equation 1.74) is rate determining. In addition, the potentiostat (see Section 20.2) has provided... [Pg.94]

It is fundamental that a reference electrode should have a stable and reproducible potential. Not all reference electrodes are suitable for all... [Pg.123]

Since the single potential of a metal cannot be measured it is necessary to use a suitable reference elecrode such as the Hg/Hg2Cl2/KCl electrode or the Ag/AgCl/KCl electrode, and although potentials are frequently expressed with reference to the standard hydrogen electrode (S.H.E.) the use of this electrode in practice is confined to fundamental studies rather than testing. [Pg.1006]

Of fundamental importance in understanding the electrochemistry of ion-selective membranes and also of biomembranes is the research in the field of voltammetry at ITIES mainly pioneered by Koryta and coworkers 99 101 . Koryta also demonstrated convincingly that a treatment like corroding metal electrodes is possible 102). For the latter, the description in the form of an Evans-diagram is most appropriate Fig. 4 shows schematically some mixed potentials, which are likely to arise at cation-selective membranes if interfering ions disturb an ideal Nernstian behavior82. Here, the vertical axis describes the galvani potential differences (absolute po-... [Pg.233]

Electric current, 78 Electric dipoles, see Dipoles Electric discharge, 239 Electric force, 76, 77 Electricity, fundamental unit, 241 Electrochemical cell chemistry of, 199 and Le Chatelier s Principle. 214 operation, 206 standard half cell, 21C Electrodes, 207 Electrolysis, 220, 221 apparatus, 40 cells, 238 of water, 40, 115 Electrolytes, 169, 179 strong, 180 weak,180... [Pg.458]

The fundamental requirement of a coulometric analysis is that the electrode reaction used for the determination proceeds with 100 per cent efficiency so that the quantity of substance reacted can be expressed by means of Faraday s Law from the measured quantity of electricity (coulombs) passed. The substance being determined may directly undergo reaction at one of the electrodes (primary coulometric analysis), or it may react in solution with another substance generated by an electrode reaction (secondary coulometric analysis). [Pg.529]

Reaction overpotential. Both overpotentials mentioned above are normally of higher importance than the reaction overpotential. It may happen sometimes, however, that other phenomena, which occur in the electrolyte or during electrode processes, such as adsorption and desorption, are the speed-limiting factors. Crystallization overpotential. This exists as a result of the inhibited intercalation of metal ions into their lattice. This process is of fundamental importance when secondary batteries are charged, especially during metal deposition on the negative side. [Pg.15]

Miniaturization is a growing trend in the field of analytical chemistry. The miniaturization of working electrodes not only has obvious practical advantages, but also opens some fundamentally new possibilities (77-79). The term microelectrode is reserved here for electrodes with at least one dimension not greater than 25 pm. [Pg.128]


See other pages where Electrodes fundamental is mentioned: [Pg.352]    [Pg.529]    [Pg.119]    [Pg.10]    [Pg.352]    [Pg.529]    [Pg.119]    [Pg.10]    [Pg.472]    [Pg.582]    [Pg.342]    [Pg.173]    [Pg.15]    [Pg.8]    [Pg.47]    [Pg.72]    [Pg.160]    [Pg.348]    [Pg.1246]    [Pg.535]    [Pg.626]    [Pg.153]    [Pg.501]    [Pg.45]    [Pg.118]    [Pg.218]    [Pg.218]    [Pg.219]    [Pg.31]   
See also in sourсe #XX -- [ Pg.112 ]




SEARCH



Anodic dissolution fundamentals electrode potential

Anodic dissolution fundamentals electrode processes

Electrode kinetics fundamentals

Fundamental Equations of Electrode Kinetics

Fundamentals and Strategy of Electrode-Level Models

Fundamentals of Electrode Reactions and Current-Potential Relations

Fundamentals of Electron Transfers at an Electrode

© 2024 chempedia.info