Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anodic dissolution fundamentals electrode processes

Since metals have very high conductivities, metal corrosion is usually electrochemical in nature. The term electrochemical is meant to imply the presence of an electrode process, i.e. a reaction in which free electrons participate. For metals, electrochemical corrosion can occur by loss of metal atoms through anodic dissolution, one of the fundamental corrosion reactions. As an example, consider a piece of zinc, hereafter referred to as an electrode, immersed in water. Zinc tends to dissolve in water, setting up a concentration of Zn ions very near the electrode... [Pg.922]

Fundamentals. The composition of liquids with respect to both identity and concentration of dissolved species can be determined with inductively coupled plasma atomic emission spectrometry (ICP-AES) [972]. The employed spectrometer can be coupled directly with an electrochemical cell wherein processes like corrosion or anodic dissolution occur. Continuous aspiration of very small liquid volumes transferred into the spectrometer allows determination of rates of dissolution as a function of various experimental parameters like electrode potential [973]. [Pg.200]

Mechanical Passivity.—In certain instances the dissolution of an anode is prevented by a visible film, e.g., lead dioxide on a lead anode in dilute sulfuric acid this phenomenon has been called mechanical passivity, but it is probably not fundamentally different from the forms of passivity already discussed. The film is usually not completely impervious, but merely has the effect of decreasing the exposed surface of the electrode to a considerable extent the effective c.d. is thus increased until another process in which the metal is involved can occur. At a lead anode in sulfuric acid, for example, the lead first dissolves to form plumbous ions which unite with the sulfate ions in the solution to form a porous layer of insoluble lead sulfate. The effective c.d. is increased so much that the potential rises until another process, viz., the formation of plumbic ions, occurs. If the acid is sufficiently concentrated these ions pass into solution, but in more dilute acid media lead dioxide is precipitated and tends partially to close up the pores the layer of dioxide is somewhat porous and so it increases in thickness until it becomes visible. Such an oxide is not completely protective and attack of the anode continues to some extent it is, however, a good conductor and so hydroxyl ions are discharged at its outer surface, and oxygen is evolved, in spite of its thickness. [Pg.497]

Chemical etching is a process for removal of silicon dioxide films through dissolution in solutions. Dissolution of silicon oxides, in the context of this book, is related to the anodic behavior of silicon electrodes. However, the dissolution of anodic oxides is not well studied. In contrast, there is a wealth of information on the dissolution of other types of oxides. Much of this information must also be applicable, at least the qualitative and mechanistic nature, to that of anodic oxides. Also, because oxides of different types are commonly used in device fabrication, compiling the etch rate data of these oxides and those of silicon (presented in Chapter 7) in the same volume would be useful in practice. Additionally, because silica-water interaction, which has been extensively investigated in the geological field, is fundamental to the etching of silicon oxides, some of the results from the investigations on the dissolution of rocks and sands are also included. [Pg.131]


See other pages where Anodic dissolution fundamentals electrode processes is mentioned: [Pg.379]    [Pg.550]    [Pg.123]    [Pg.379]    [Pg.211]    [Pg.532]    [Pg.26]    [Pg.3]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Anode process, 1.20

Anodic dissolution

Anodic processes

Anodization process

Anodized electrodes

Dissolution process

Electrode anode

Electrode dissolution

Electrode process

Electrode processe

Electrodes fundamental

Electrodes processing

Fundamental processes

© 2024 chempedia.info