Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical cells chemistry

Electric current, 78 Electric dipoles, see Dipoles Electric discharge, 239 Electric force, 76, 77 Electricity, fundamental unit, 241 Electrochemical cell chemistry of, 199 and Le Chatelier s Principle. 214 operation, 206 standard half cell, 21C Electrodes, 207 Electrolysis, 220, 221 apparatus, 40 cells, 238 of water, 40, 115 Electrolytes, 169, 179 strong, 180 weak,180... [Pg.458]

Cell Chemistry. Work on the mechanism of the carbon—2inc cell has been summari2ed (4), but the dynamics of this system are not entirely understood. The electrochemical behavior of electrolytic (FMD), chemical (CMD), and natural (NMD) manganese dioxide is slightly different. Battery-grade NMD is most commonly in the form of the mineral nsutite [12032-72-3] xMn02, which is a stmctural intergrowth of the minerals... [Pg.521]

Because this design has relatively low power density, recent work has focused on a monolithic SOFC, since this could have faster cell chemistry kinetics. The very high temperatures do, however, present sealing and cracking problems between the electrochemically active area and the gas manifolds. [Pg.528]

Click Chemistry Interactive for the self-study module a voltaic electrochemical cell. [Pg.481]

To a chemist, electrochemical cells are of interest primarily for the information they yield CENGAGENOW concerning the spontaneity of redox reactions, the strengths of oxidizing and reducing Click Chemistry Interactive for a self-study... [Pg.499]

Electrochemical cells are familiar—a flashlight operates on current drawn from electrochemical cells called dry cells, and automobiles are started with the aid of a battery, a set of electrochemical cells in tandem. The last time you changed the dry cells in a flashlight because the old ones were dead, did you wonder what had happened inside those cells Why does electric current flow from a new dry cell but not from one that has been used many hours We shall see that this is an important question in chemistry. By studying the chemical reactions that occur in an electrochemical cell we discover a basis for predicting whether equilibrium in a chemical reaction fa-... [Pg.199]

These ideas, developed for an electrochemical cell, have great importance in chemistry because they are also applicable to chemical reactions that occur in a single beaker. Without an electric circuit or an opportunity for electric current to flow, the chemical changes that occur in a cell can be duplicated in a single solution. It is reasonable to apply the same explanation. [Pg.202]

Microfabrication technology has made a considerable impact on the miniaturization of electrochemical sensors and systems. Such technology allows replacement of traditional bulky electrodes and beaker-type cells with mass-producible, easy-to-use sensor strips. These strips can be considered as disposable electrochemical cells onto which the sample droplet is placed. The development of microfabricated electrochemical systems has the potential to revolutionize the field of electroanaly-tical chemistry. [Pg.193]

The first study on the oxidation of arylmethanes used this reaction as a model to show the general advantages of electrochemical micro processing and to prove the feasibility of an at this time newly developed reactor concept [69]. Several limits of current electrochemical process technology hindered its widespread use in synthetic chemistry [69]. As one major drawback, electrochemical cells stiU suffer from inhomogeneities of the electric field. In addition, heat is released and large contents of electrolyte are needed that have to be separated from the product. [Pg.545]

Figure 17.7 Electrocatalysis of O2 reduction by Pycnoporus cinnabarinus laccase on a 2-aminoanthracene-modified pyrolytic graphite edge (PGE) electrode and an unmodified PGE electrode at 25 °C in sodium citrate buffer (200 mM, pH 4). Red curves were recorded immediately after spotting laccase solution onto the electrode, while black curves were recorded after exchanging the electrochemical cell solution for enzyme-fiiee buffer solution. Insets show the long-term percentage change in limiting current (at 0.44 V vs. SHE) for electrocatalytic O2 reduction by laccase on an unmodified PGE electrode ( ) or a 2-aminoanthracene modified electrode ( ) after storage at 4 °C, and a cartoon representation of the probable route for electron transfer through the anthracene (shown in blue) to the blue Cu center of laccase. Reproduced by permission of The Royal Society of Chemistry fi om Blanford et al., 2007. (See color insert.)... Figure 17.7 Electrocatalysis of O2 reduction by Pycnoporus cinnabarinus laccase on a 2-aminoanthracene-modified pyrolytic graphite edge (PGE) electrode and an unmodified PGE electrode at 25 °C in sodium citrate buffer (200 mM, pH 4). Red curves were recorded immediately after spotting laccase solution onto the electrode, while black curves were recorded after exchanging the electrochemical cell solution for enzyme-fiiee buffer solution. Insets show the long-term percentage change in limiting current (at 0.44 V vs. SHE) for electrocatalytic O2 reduction by laccase on an unmodified PGE electrode ( ) or a 2-aminoanthracene modified electrode ( ) after storage at 4 °C, and a cartoon representation of the probable route for electron transfer through the anthracene (shown in blue) to the blue Cu center of laccase. Reproduced by permission of The Royal Society of Chemistry fi om Blanford et al., 2007. (See color insert.)...
Voltammetry is a part of the repertoire of dynamic electrochemical techniques for the study of redox (reduction-oxidation) reactions through current-voltage relationships. Experimentally, the current response (i, the signal) is obtained by the applied voltage (.E, the excitation) in a suitable electrochemical cell. Polarography is a special form of voltammetry where redox reactions are studied with a dropping mercury electrode (DME). Polarography was the first dynamic electrochemical technique developed by J. Heyrovsky in 1922. He was awarded the Nobel Prize in Chemistry for this discovery. [Pg.662]

Reliable operation of the electrochemical cell membrane, particularly for agent-containing slurries. (Currently, cell pressures and chemistry must be carefully controlled, and it is unclear if the membranes will work well in prolonged exposure to organophosphate-containing slurries.)... [Pg.32]

In many STM studies little effort has been made to control the atmosphere within the electrochemical cell. Yet oxygen is known to exert a major role in the chemistry and corrosion of many transition metals. For example, several STM studies have used the copper/copper ion reference electrode, yet the electrode is known to be polarized from its reversible condition by oxygen, leading to significant dissolution [154]. These effects become particularly significant in the smdy of metal deposition and dissolu-... [Pg.246]

The cycle life of a rechargeable battery depends on the long-term reversibility of cell chemistries, and the electrochemical stability of the electrolyte plays a crucial role in maintaining this reversibility. In electrochemistry, there have been numerous techniques developed to measure and quantify the electrochemical stability of electrolyte components, and the most frequently used technique is cyclic voltammetry (CV) in its many variations. [Pg.83]

Much of the recent research in solid state chemistry is related to the ionic conductivity properties of solids, and new electrochemical cells and devices are being developed that contain solid, instead of liquid, electrolytes. Solid-state batteries are potentially useful because they can perform over a wide temperature range, they have a long shelf life, it is possible to make them very small, and they are spill-proof We use batteries all the time—to start cars, in toys, watches, cardiac pacemakers, and so on. Increasingly we need lightweight, small but powerful batteries for a variety of uses such as computer memory chips, laptop computers, and mobile phones. Once a primary battery has discharged, the reaction cannot be reversed and it has to be thrown away, so there is also interest in solid electrolytes in the production of secondary or storage batteries, which are reversible because once the chemical reaction has taken place the reactant concentrations can be... [Pg.215]

Developments in electroanalytical chemistry are driven by technical advances in electronics, computers, and materials. Present scientific capabilities available in a research laboratory will be applicable for field measurements with the advent of smaller, less expensive, more powerful computers. Miniaturization of electrochemical cells, which can improve perfonnance, especially response time, can be implemented most effectively in the context of miniaturization of control circuitry. Concomitant low cost could make disposable systems a practical reality. Sophisticated data analysis and data handling techniques can, with better facilities for computation, be handled in real time. [Pg.54]

Figure 1.4 is an illustration of a typical dynamic electrochemical experiment in which the reduced form of a substance (white circles) is initially present. Current or potential is applied to oxidize this substance. The oxidized substance (black circles) can then be reconverted to the starting material. The electrochemical cell can be represented as a circuit element as depicted in the upper left of the figure. The potential of the working electrode is monitored in relation to the reference electrode. The current passes between the auxiliary and working electrodes. How and why this is done is the subject of Chapters 2 to 7. The motion of molecules or ions to and from the electrode surface is critical. The electron transfer occurs at the working electrode and its surface properties are therefore crucial. While students new to chemistry are introduced to redox couples such as Fe(II)/Fe(III) and Ce(III)/Ce(IV), many redox active substances are far more complex and frequently exhibit instability. [Pg.8]

Chapters 9-19 deal with some practical aspects of electroanalytical chemistry. These chapters are aimed at giving the novice some insight into the nuts and bolts of electrochemical cells and solutions. In this second edition, further emphasis has been given to obtaining and maintaining clean solutions, and new chapters have been added on chemically modified electrodes and electrochemical studies at reduced temperature. [Pg.966]

Gas sensing membrane Not true membrane electrodes as no current passes across the membrane. The ion being determined diffuses through the membrane into an electrochemical cell. The consequent change in the chemistry of the cell is monitored by an ion sensitive electrode. nh3, so2, co2... [Pg.509]

N-type semiconductors can be used as photoanodes in electrochemical cells Q., 2, 3), but photoanodic decomposition of the photoelectrode often competes with the desired anodic process (1 4 5). When photoanodic decomposition of the electrode does compete, the utility of the photoelectrochemical device is limited by the photoelectrode decomposition. In a number of instances redox additives, A, have proven to be photooxidized at n-type semiconductors with essentially 100% current efficiency (1, 2, 3, 6>, ], 8, 9). Research in this laboratory has shown that immobilization of A onto the photoanode surface may be an approach to stabilization of the photoanode when the desired chemistry is photooxidation of a solution species B, where oxidation of B is not able to directly compete with the anodic decomposition of the "naked" (non-derivatized) photoanode (10, 11, 12). Photoanodes derivatized with a redox reagent A can effect oxidation of solution species B according to the sequence represented by equations (1) - (3) (10-15). [Pg.37]

Despite the pervasive use of electrochemical sensors and the fundamental importance of electrochemistry as a division of physical and analytical chemistry, this field of study has not traditionally been a favorite of students. One reason for this could be the fact that most electrochemical and electroanalytical textbooks introduce electrochemistry by explaining first the thermodynamics of the electrochemical cell. That approach is bound to discourage all but the brave few. [Pg.99]


See other pages where Electrochemical cells chemistry is mentioned: [Pg.77]    [Pg.199]    [Pg.199]    [Pg.440]    [Pg.948]    [Pg.163]    [Pg.17]    [Pg.717]    [Pg.201]    [Pg.61]    [Pg.3]    [Pg.10]    [Pg.31]    [Pg.259]    [Pg.89]    [Pg.49]    [Pg.290]    [Pg.43]    [Pg.166]    [Pg.186]    [Pg.1031]    [Pg.440]    [Pg.88]    [Pg.377]    [Pg.150]    [Pg.403]    [Pg.479]   
See also in sourсe #XX -- [ Pg.332 , Pg.333 , Pg.334 , Pg.335 , Pg.336 , Pg.337 , Pg.338 , Pg.339 , Pg.340 , Pg.341 , Pg.342 , Pg.343 , Pg.344 , Pg.345 , Pg.346 , Pg.347 , Pg.348 , Pg.349 ]




SEARCH



Cell Chemistry

Electroanalytical chemistry electrochemical cells

Electrochemical cell

© 2024 chempedia.info