Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anodic dissolution fundamentals electrode potential

Fundamentals. The composition of liquids with respect to both identity and concentration of dissolved species can be determined with inductively coupled plasma atomic emission spectrometry (ICP-AES) [972]. The employed spectrometer can be coupled directly with an electrochemical cell wherein processes like corrosion or anodic dissolution occur. Continuous aspiration of very small liquid volumes transferred into the spectrometer allows determination of rates of dissolution as a function of various experimental parameters like electrode potential [973]. [Pg.200]

Mechanical Passivity.—In certain instances the dissolution of an anode is prevented by a visible film, e.g., lead dioxide on a lead anode in dilute sulfuric acid this phenomenon has been called mechanical passivity, but it is probably not fundamentally different from the forms of passivity already discussed. The film is usually not completely impervious, but merely has the effect of decreasing the exposed surface of the electrode to a considerable extent the effective c.d. is thus increased until another process in which the metal is involved can occur. At a lead anode in sulfuric acid, for example, the lead first dissolves to form plumbous ions which unite with the sulfate ions in the solution to form a porous layer of insoluble lead sulfate. The effective c.d. is increased so much that the potential rises until another process, viz., the formation of plumbic ions, occurs. If the acid is sufficiently concentrated these ions pass into solution, but in more dilute acid media lead dioxide is precipitated and tends partially to close up the pores the layer of dioxide is somewhat porous and so it increases in thickness until it becomes visible. Such an oxide is not completely protective and attack of the anode continues to some extent it is, however, a good conductor and so hydroxyl ions are discharged at its outer surface, and oxygen is evolved, in spite of its thickness. [Pg.497]


See other pages where Anodic dissolution fundamentals electrode potential is mentioned: [Pg.124]    [Pg.379]    [Pg.550]    [Pg.532]    [Pg.1043]    [Pg.135]    [Pg.379]    [Pg.211]    [Pg.26]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Anode potential

Anodic dissolution

Anodized electrodes

Electrode anode

Electrode dissolution

Electrodes fundamental

© 2024 chempedia.info