Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrodes acidic

Ammonia (distillation, titrimetric, ammonia-selective electrode, phenate method) nitrite (ion chromatography, colorimetric) nitrate (ultraviolet spectrophotometric screening, nitrate electrode, reduction) organic (Kjeldahl, persulfate method) lodimetric and modifications, membrane electrode Acid digestion, colorimetric methods Gravimetric, atomic absorption spectrometry, colorimetric Colorimetry, iodometric, ion-selective electrode Gravimetric, turbidimetric, colorimetric... [Pg.5060]

Pb(ll), Vegetables Cd(ll) DPASV Nafion-coated bismuth film electrode Acid/dry- ashing digestion 0.1 M acetate buffer solution, pH 4.5 DL 0.17 pg - [14]... [Pg.32]

Zn(ll) Vegetables DPASV Nafion- coated bismuth film electrode Acid/dry- ashing digestion... [Pg.37]

Figure 7. Voltammetric peak currents as a function of FeMoco concentration for (ox) (s-r) and (s-r) (reduction). RVC electrode, "acidic 0.1 M TBAPFe/NMF. Figure 7. Voltammetric peak currents as a function of FeMoco concentration for (ox) (s-r) and (s-r) (reduction). RVC electrode, "acidic 0.1 M TBAPFe/NMF.
M.p. 296 C. Accepts an electron from suitable donors forming a radical anion. Used for colorimetric determination of free radical precursors, replacement of Mn02 in aluminium solid electrolytic capacitors, construction of heat-sensitive resistors and ion-specific electrodes and for inducing radical polymerizations. The charge transfer complexes it forms with certain donors behave electrically like metals with anisotropic conductivity. Like tetracyanoethylene it belongs to a class of compounds called rr-acids. tetracyclines An important group of antibiotics isolated from Streptomyces spp., having structures based on a naphthacene skeleton. Tetracycline, the parent compound, has the structure ... [Pg.389]

Examples of the lader include the adsorption or desorption of species participating in the reaction or the participation of chemical reactions before or after the electron transfer step itself One such process occurs in the evolution of hydrogen from a solution of a weak acid, HA in this case, the electron transfer from the electrode to die proton in solution must be preceded by the acid dissociation reaction taking place in solution. [Pg.603]

Luminescence has been used in conjunction with flow cells to detect electro-generated intennediates downstream of the electrode. The teclmique lends itself especially to the investigation of photoelectrochemical processes, since it can yield mfonnation about excited states of reactive species and their lifetimes. It has become an attractive detection method for various organic and inorganic compounds, and highly sensitive assays for several clinically important analytes such as oxalate, NADH, amino acids and various aliphatic and cyclic amines have been developed. It has also found use in microelectrode fundamental studies in low-dielectric-constant organic solvents. [Pg.1948]

Electron tunnelling tlirough monolayers of long-chain carboxylic acids is one aspect of interest since it was assumed tliat such films could be used as gate electrodes in field-effect transistors or even in devices depending on electron tunnelling [24, 26, 35, 36, 37 and 38]- It was found, however, tliat tlie whole subject depends critically on... [Pg.2614]

Horanyi G and Rizmayer E M 1984 Radiotracer study of anion adsorption at silver electrodes in acidic medium J. Electroanal. Chem. 176 339-48... [Pg.2756]

Kolics A, Thomas A E and Wieckowski A 1996 CI-labelled and electrochemical study of chloride adsorption on a gold electrode from perchloric acid media J. Chem. See. Faraday Trans. 92 3727-36... [Pg.2756]

Modestov A D, Zhou G-D, Ge FI-FI and Loo B FI 1995 A study by voltammetry and the photocurrent response method of copper electrode behavior in acidic and alkaline solutions containing chloride ions J. Electroanal. Chem. 380 63-8... [Pg.2758]

Toney M F, Howard J N, Richer J, Borges G L, Gordon J G, Melroy O R, Yee D and Sorenson L B 1995 Electrochemical deposition of copper on a gold electrode in sulfuric acid Resolution of the interfacial structure Phys. Rev. Lett. 75 4472-5... [Pg.2759]

By analogy, ammonium salts should behave as acids in liquid ammonia, since they produce the cation NH4 (the solvo-cation ), and soluble inorganic amides (for example KNHj, ionic) should act as bases. This idea is borne out by experiment ammonium salts in liquid ammonia react with certain metals and hydrogen is given off. The neutralisation of an ionic amide solution by a solution of an ammonium salt in liquid ammonia can be carried out and followed by an indicator or by the change in the potential of an electrode, just like the reaction of sodium hydroxide with hydrochloric acid in water. The only notable difference is that the salt formed in liquid ammonia is usually insoluble and therefore precipitates. [Pg.90]

Generally the solubility of a given metal halate decreases from chlorate(V) to iodatef and many heavy metal iodates(V) are quantitatively insoluble. Like their parent acids, the halates(V) are strong oxidising agents, especially in acid solution their standard electrode potentials are given below (in volts) ... [Pg.340]

Despite its electrode potential (p. 98), very pure zinc has little or no reaction with dilute acids. If impurities are present, local electrochemical cells are set up (cf the rusting of iron. p. 398) and the zinc reacts readily evolving hydrogen. Amalgamation of zinc with mercury reduces the reactivity by giving uniformity to the surface. Very pure zinc reacts readily with dilute acids if previously coated with copper by adding copper(II) sulphate ... [Pg.417]

Electrolysis cell. This is shown in Fig. VI, 31, 1 and is almost self-explanatory. The cylindrical cell of Pyrex glass (6" long by 2 " diameter) is cooled by immersion in a cooling bath. The electrodes consist of two platinum plates (4 cm. X 2-5 cm. X 0-3 mm.), which are placed about 2 mm. apart. The temperature of the electrolyte is maintained at 30-35° by means of the internal cooling coil and also by immersion of the cell in ice-water. A current of 1 5-2 0 amperes is passed until the electrolyte becomes slightly alkaline, which normally takes about 20-50 per cent, longer than the calculated time on the basis of the current and the amounts of acid employed. It is advantageous to reverse the direction of the current occasionally. [Pg.939]

Thus if a mixture containing alanine aspartic acid and lysine is subjected to electrophoresis m a buffer that matches the isoelectric point of alanine (pH 6 0) aspartic acid (pi = 2 8) migrates toward the positive electrode alanine remains at the origin and lysine (pi =9 7) migrates toward the negative elec trode (Figure 27 3b)... [Pg.1120]

As a result of a variable liquid-junction potential, the measured pH may be expected to differ seriously from the determined from cells without a liquid junction in solutions of high acidity or high alkalinity. Merely to affirm the proper functioning of the glass electrode at the extreme ends of the pH scale, two secondary standards are included in Table 8.14. In addition, values for a 0.1 m solution of HCl are given to extend the pH scale up to 275°C [see R. S. Greeley, Anal. Chem. 32 1717 (I960)] ... [Pg.931]

The most obvious sensor for an acid-base titration is a pH electrode.For example, Table 9.5 lists values for the pH and volume of titrant obtained during the titration of a weak acid with NaOH. The resulting titration curve, which is called a potentiometric titration curve, is shown in Figure 9.13a. The simplest method for finding the end point is to visually locate the inflection point of the titration curve. This is also the least accurate method, particularly if the titration curve s slope at the equivalence point is small. [Pg.290]

The following experiments may he used to illustrate the application of titrimetry to quantitative, qtmlitative, or characterization problems. Experiments are grouped into four categories based on the type of reaction (acid-base, complexation, redox, and precipitation). A brief description is included with each experiment providing details such as the type of sample analyzed, the method for locating end points, or the analysis of data. Additional experiments emphasizing potentiometric electrodes are found in Chapter 11. [Pg.358]

A pH electrode is normally standardized using two buffers one near a pH of 7 and one that is more acidic or basic depending on the sample s expected pH. The pH electrode is immersed in the first buffer, and the standardize or calibrate control is adjusted until the meter reads the correct pH. The electrode is placed in the second buffer, and the slope or temperature control is adjusted to the-buffer s pH. Some pH meters are equipped with a temperature compensation feature, allowing the pH meter to correct the measured pH for any change in temperature. In this case a thermistor is placed in the sample and connected to the pH meter. The temperature control is set to the solution s temperature, and the pH meter is calibrated using the calibrate and slope controls. If a change in the sample s temperature is indicated by the thermistor, the pH meter adjusts the slope of the calibration based on an assumed Nerstian response of 2.303RT/F. [Pg.492]

Potcntiomctric Titrations In Chapter 9 we noted that one method for determining the equivalence point of an acid-base titration is to follow the change in pH with a pH electrode. The potentiometric determination of equivalence points is feasible for acid-base, complexation, redox, and precipitation titrations, as well as for titrations in aqueous and nonaqueous solvents. Acid-base, complexation, and precipitation potentiometric titrations are usually monitored with an ion-selective electrode that is selective for the analyte, although an electrode that is selective for the titrant or a reaction product also can be used. A redox electrode, such as a Pt wire, and a reference electrode are used for potentiometric redox titrations. More details about potentiometric titrations are found in Chapter 9. [Pg.494]

Controlled-potential coulometry also can be applied to the quantitative analysis of organic compounds, although the number of applications is significantly less than that for inorganic analytes. One example is the six-electron reduction of a nitro group, -NO2, to a primary amine, -NH2, at a mercury electrode. Solutions of picric acid, for instance, can be analyzed by reducing to triaminophenol. [Pg.502]


See other pages where Electrodes acidic is mentioned: [Pg.163]    [Pg.50]    [Pg.520]    [Pg.726]    [Pg.271]    [Pg.163]    [Pg.50]    [Pg.520]    [Pg.726]    [Pg.271]    [Pg.24]    [Pg.111]    [Pg.155]    [Pg.291]    [Pg.1940]    [Pg.2752]    [Pg.628]    [Pg.941]    [Pg.97]    [Pg.213]    [Pg.1120]    [Pg.1120]    [Pg.1180]    [Pg.311]    [Pg.322]    [Pg.474]    [Pg.498]    [Pg.509]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



© 2024 chempedia.info