Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemically sensors

Electrochemical Microsensors. The most successful chemical microsensor in use as of the mid-1990s is the oxygen sensor found in the exhaust system of almost all modem automobiles (see Exhaust control, automotive). It is an electrochemical sensor that uses a soHd electrolyte, often doped Zr02, as an oxygen ion conductor. The sensor exemplifies many of the properties considered desirable for all chemical microsensors. It works in a process-control situation and has very fast (- 100 ms) response time for feedback control. It is relatively inexpensive because it is designed specifically for one task and is mass-produced. It is relatively immune to other chemical species found in exhaust that could act as interferants. It performs in a very hostile environment and is reHable over a long period of time (36). [Pg.392]

Immobilized Enzymes. The immobilized enzyme electrode is the most common immobilized biopolymer sensor, consisting of a thin layer of enzyme immobilized on the surface of an electrochemical sensor as shown in Figure 6. The enzyme catalyzes a reaction that converts the target substrate into a product that is detected electrochemicaHy. The advantages of immobilized enzyme electrodes include minimal pretreatment of the sample matrix, small sample volume, and the recovery of the enzyme for repeated use (49). Several reviews and books have been pubHshed on immobilized enzyme electrodes (50—52). [Pg.102]

Enzyme Immunosensors. Enzyme immunosensors are enzyme immunoassays coupled with electrochemical sensors. These sensors (qv) require multiple steps for analyte determination, and either sandwich assays or competitive binding assays maybe used. Both of these assays use antibodies for the analyte of interest attached to a membrane on the surface of an electrochemical sensor. In the sandwich assay type, the membrane-bound antibody binds the sample antigen, which in turn binds another antibody that is enzyme-labeled. This immunosensor is then placed in a solution containing the substrate for the labeling enzyme and the rate of product formation is measured electrochemically. The rate of the reaction is proportional to the amount of bound enzyme and thus to the amount of the analyte antigen. The sandwich assay can be used only with antigens capable of binding two different antibodies simultaneously (53). [Pg.103]

The doped Zr02 stmctures are used as electrochemical sensors, as, for example, when used to detect oxygen in automotive exhaust (see Exhaust CONTROL, automotive). The sensor voltage is governed by the Nemst equation (eq. 17) where the activities are replaced by oxygen partial pressures and the air inside the chamber is used as reference. [Pg.355]

Moreover, disposable electrochemical sensors for the detection of a specific sequence of DNA were realised by immobilising synthetic single-stranded oligonucleotides onto a graphite or a gold screen-printed electrode. Tire probes became hybridised with different concentrations of complementary sequences present in the sample. [Pg.15]

Miniaturisation of various devices and systems has become a popular trend in many areas of modern nanotechnology such as microelectronics, optics, etc. In particular, this is very important in creating chemical or electrochemical sensors where the amount of sample required for the analysis is a critical parameter and must be minimized. In this work we will focus on a micrometric channel flow system. We will call such miniaturised flow cells microfluidic systems , i.e. cells with one or more dimensions being of the order of a few microns. Such microfluidic channels have kinetic and analytical properties which can be finely tuned as a function of the hydrodynamic flow. However, presently, there is no simple and direct method to monitor the corresponding flows in. situ. [Pg.85]

A new generation of mesoporous silica (SG) materials obtained by sol-gel technique where polymers and ionic or non-ionic surfactant act as stmcture - directed templates is widely developed during last year s. Final materials can be synthesized as thin films and used as sensitive elements of optical and electrochemical sensors. [Pg.306]

We developed a sensor for determination of content of phosphorars in metallurgical melts. In quality of ion conductor used orthophosphate of calcium which pressed in tablets 010 mm. Tablets (mass 1-2 g) annealed at a temperature 400°C during 7-10 h. Tablets melts then in a quartz tube and placed the alloy of iron containing 1 mass % P. Control of sensor lead on Fe - P melts. Information on activities (effective concentration) of phosphorars in Fe - P melts was received. It is set that the isotherm of activity of phosphorars shows negative deviations from the Raouls law. Comparison them with reliable literary inforiuation showed that they agree between itself. Thus, reliable data on activities (effective concentration) of phosphorars in metallic melts it is possible to received by created electrochemical sensor for express determination. [Pg.326]

L-lactate-cytochrome c-oxidoreductase (flavocytochrome was isolated for the first time from the thermo-tolerant yeast H. polymorpha. The mentioned above enzyme preparations were used for construction of the biorecognition elements of electrochemical sensors. [Pg.347]

Microfabrication technology has made a considerable impact on the miniaturization of electrochemical sensors and systems. Such technology allows replacement of traditional bulky electrodes and beaker-type cells with mass-producible, easy-to-use sensor strips. These strips can be considered as disposable electrochemical cells onto which the sample droplet is placed. The development of microfabricated electrochemical systems has the potential to revolutionize the field of electroanaly-tical chemistry. [Pg.193]

When more experience is gained on microwave electrochemical phenomena, they could, for example, be used to characterize electrochemical systems in a contact-free way. The PMC signal alone could describe the system sufficiently for understanding its behavior. An interesting application would then be fast electrochemical sensors that, while implanted or separated by a glass diaphragm, could be scanned and evaluated without electrical contacts. [Pg.520]

One of the major potential applications of conducting polymers is as mediators or catalysts for electrochemical sensors and electrosynthesis. [Pg.585]

Electrochemical sensors play a crucial role in environmental and industrial monitoring, as well as in medical and clinical analysis. The common feature of all electroanalytical sensors is that they rely on the detection of an electrical property (i.e., potential, resistance, current) so that they are normally classified according to the mode of measurement (i.e., potentiometric, conductometric, amperometric). A number of surveys have been published on this immense field. The reader may find the major part of the older and recent bibliography in the comprehensive reviews of Bakker et al. [109-111]. Pejcic and De Marco have presented an interesting survey... [Pg.335]

Particularly attractive for numerous bioanalytical applications are colloidal metal (e.g., gold) and semiconductor quantum dot nanoparticles. The conductivity and catalytic properties of such systems have been employed for developing electrochemical gas sensors, electrochemical sensors based on molecular- or polymer-functionalized nanoparticle sensing interfaces, and for the construction of different biosensors including enzyme-based electrodes, immunosensors, and DNA sensors. Advances in the application of molecular and biomolecular functionalized metal, semiconductor, and magnetic particles for electroanalytical and bio-electroanalytical applications have been reviewed by Katz et al. [142]. [Pg.340]

Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74 2781-2800 Bakker E (2004) Electrochemical sensors. Anal Chem 76 3285-3298 Bakker E, Qin Y (2006) Electrochemical sensors. Anal Chem 78 3965-3983 Pejcic B, De Marco R (2006) Impedance spectroscopy Over 35 years of electrochemical sensor optimization. Electrochim Acta 51 6217-6229... [Pg.347]

In addition to chromatography based on adsorption, ion pair chromatography (IP-HPLC) and capillary electrophoresis (CE) or capillary zone electrophoresis (CZE) are new methods that became popular and are sufficiently accurate for these types of investigations. Other methods involving electrochemical responses include differential pulse polarography, adsorptive and derived voltammetry, and more recently, electrochemical sensors. [Pg.534]


See other pages where Electrochemically sensors is mentioned: [Pg.203]    [Pg.358]    [Pg.296]    [Pg.296]    [Pg.297]    [Pg.326]    [Pg.649]    [Pg.1064]    [Pg.171]    [Pg.171]    [Pg.172]    [Pg.174]    [Pg.176]    [Pg.178]    [Pg.180]    [Pg.182]    [Pg.184]    [Pg.186]    [Pg.188]    [Pg.190]    [Pg.192]    [Pg.194]    [Pg.196]    [Pg.198]    [Pg.200]    [Pg.202]    [Pg.160]    [Pg.163]    [Pg.422]    [Pg.92]    [Pg.336]    [Pg.336]    [Pg.347]   
See also in sourсe #XX -- [ Pg.397 , Pg.398 , Pg.399 , Pg.400 ]




SEARCH



Electrochemical sensors

© 2024 chempedia.info