Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead sensors

Figure 6-8 Lead sensor candidates, H22 and GTP Green, for glutathione and GTP, respectively, derived from diversity-directed sensor discovery approaches. Figure 6-8 Lead sensor candidates, H22 and GTP Green, for glutathione and GTP, respectively, derived from diversity-directed sensor discovery approaches.
Unfortunately, no lead sensors have been developed to date that meet all of these criteria. The system that has been used most extensively to quantitate lead levels in vivo is the fluorescent sensor Indo-1 (Fig. 24) (443 45). Although originally developed as a calcium dye (446) log iCfc[Ca(II)] = 6.6, Indo-1 (2-[4-[bis(carboxymethyl)amino]-3-[2-[2-[bis(carboxymethyl)amino]-5-methyl-phenoxy]ethoxy]phenyl]-lH-indole-6-carboxylic acid) binds lead quite tightly (log ffo[Pb(II)] = 10.5 and exhibits a very different fluorescence emission spectrum when bound to lead than when free in solution or bound to calcium (Fig. 24). As a result, Indo-1 can be used to determine whether lead is present in cells, even in the presence of excess calcium, provided that the fluorescence spectrum is deconvoluted to account for calcium interference and all of the possible equilibria are taken into consideration (443, 445). The main drawback of the Indo-1 detection system is that the dye is almost completely quenched when bound to lead (Fig. 24, spectrum b), making it difficult to quantitate the amount of free lead present. [Pg.95]

Wang, J., Tian, B., 1993a. Mercury-free disposable lead sensors based on potentiometric stripping analysis at gold-coated screen-printed electrodes. Anal. Chem. 65, 1529-1532. [Pg.150]

In 1957, Ethyl Corp. announced anew antiknock compound, methylcyclopentadienyknanganese tricarbonyl [12108-13-3] (MMT). MMT is almost as effective as lead on a per gram of metal basis, but because manganese was more expensive than lead, MMT was not widely used until limits were placed on the lead content of gasoline. MMT was used in unleaded fuel between 1975 and 1978. After a large fleet test suggested that MMT could increase exhaust emissions because it interfered with catalysts and oxygen sensors, EPA banned its use in unleaded fuel in 1978. MMT is used in Canada in unleaded fuel. [Pg.180]

Another important class of titanates that can be produced by hydrothermal synthesis processes are those in the lead zirconate—lead titanate (PZT) family. These piezoelectric materials are widely used in manufacture of ultrasonic transducers, sensors, and minia ture actuators. The electrical properties of these materials are derived from the formation of a homogeneous soHd solution of the oxide end members. The process consists of preparing a coprecipitated titanium—zirconium hydroxide gel. The gel reacts with lead oxide in water to form crystalline PZT particles having an average size of about 1 ]lni (Eig. 3b). A process has been developed at BatteUe (Columbus, Ohio) to the pilot-scale level (5-kg/h). [Pg.500]

Lead sulfide is used in photoconductive cells, infrared detectors, transistors, humidity sensors in rockets, catalysts for removing mercaptans from petroleum distillates, mirror coatings to limit reflectivity, high temperature solid-film lubricants, and in blue lead pigments (82). [Pg.69]

These lead-based materials (PZT, PLZT, PMN) form a class of ceramics with either important dielectric, relaxor, pie2oelectric, or electrooptic properties, and are thus used for appHcations ia actuator and sensor devices. Resistive properties of these materials ia film form mirror the conduction processes ia the bulk material. Common problems associated with their use are low dielectric breakdown, iacreased aging, and electrode iajection, decreasiag the resistivity and degrading the properties. [Pg.362]

Entrapment of biochemically reactive molecules into conductive polymer substrates is being used to develop electrochemical biosensors (212). This has proven especially useful for the incorporation of enzymes that retain their specific chemical reactivity. Electropolymerization of pyrrole in an aqueous solution containing glucose oxidase (GO) leads to a polypyrrole in which the GO enzyme is co-deposited with the polymer. These polymer-entrapped GO electrodes have been used as glucose sensors. A direct relationship is seen between the electrode response and the glucose concentration in the solution which was analyzed with a typical measurement taking between 20 to 40 s. [Pg.45]

It is veiy important that sealless pumps be flooded with hquid before starting, to avoid damage to bearings from imbalance or overheating. Entrained gases in the suction can cause immediate imbalance problems and lead to internal bearing damage. Some type of liquia sensor is recommended. Sealless pumps must not be operated deadheaded (pump hquid full with inlet and/or outlet valves closed). [Pg.2310]

Aromatic solvents or polycyclic aromatic hydrocarbons (PAFI) in water, e.g. can be detected by QCM coated with bulk-imprinted polymer layers. Flere, the interaction sites are not confined to the surface of the sensitive material but are distributed within the entire bulk leading to very appreciable sensor responses. Additionally, these materials show high selectivity aromatic solvents e.g. can be distinguished both by the number of methyl groups on the ring (toluene vs. xylene, etc.) and by their respective position. Selectivity factors in this case reach values of up to 100. [Pg.298]

Due to the very flexible synthetic approach, imprinted layers are highly suitable for sensor measurements in complex mixtures Sensor coatings consisting of a carbonic-acid-imprinted sol-gel material e.g. incorporate oxidative degradation products from engine oil leading to a chemical lubricant sensor. [Pg.298]

Vimses are also detectable with imprinted sensor materials thus leading to the first tme rapid on-line analysis for these species that are too small for e.g. light scattering experiments. So we e.g. succeeded in determining the tobacco mosaic vims (TMV) in plant saps as well as the Human Rhinovims (HRV). [Pg.298]

We developed a sensor for determination of content of phosphorars in metallurgical melts. In quality of ion conductor used orthophosphate of calcium which pressed in tablets 010 mm. Tablets (mass 1-2 g) annealed at a temperature 400°C during 7-10 h. Tablets melts then in a quartz tube and placed the alloy of iron containing 1 mass % P. Control of sensor lead on Fe - P melts. Information on activities (effective concentration) of phosphorars in Fe - P melts was received. It is set that the isotherm of activity of phosphorars shows negative deviations from the Raouls law. Comparison them with reliable literary inforiuation showed that they agree between itself. Thus, reliable data on activities (effective concentration) of phosphorars in metallic melts it is possible to received by created electrochemical sensor for express determination. [Pg.326]

Same sensor used for basic process control system and safety instrumented system. Failure of sensor leads to loss of control system and safety system functionality. [Pg.113]

Material of construction of sensor not suited for operating environment. Loss of sensing capability, leading to unwanted consequences such as spurious trips, overt (announced) and covert (unannounced) faults. [Pg.115]

Recent developments are leading toward other materials like silica gel or polymers. Certain types of semiconductors are also used as resistive probes. The measurement range of resistive sensors varies depending on materials used. It can be as wide as 0-99% RH. The dynamics are fast enough for normal ventilation applications and the stability of good resistive sensors is high. This does not reduce the need for calibration, but the intervals of successive calibrations can be extended. [Pg.1143]

The application of this procedure is best seen by performing an FMEA on a simple two-phase separator. Table 14-3 lists those process upsets that can be sensed before an undesirable event leading to a source of condition occurs. For overpressure, primary protection is provided by a high pressure sensor that shuts in the inlet (PSH). If this device fails, secondary protection is provided by a relief valve (PSV). [Pg.400]


See other pages where Lead sensors is mentioned: [Pg.1176]    [Pg.99]    [Pg.1176]    [Pg.99]    [Pg.326]    [Pg.525]    [Pg.246]    [Pg.251]    [Pg.315]    [Pg.259]    [Pg.499]    [Pg.193]    [Pg.311]    [Pg.343]    [Pg.148]    [Pg.390]    [Pg.391]    [Pg.391]    [Pg.321]    [Pg.136]    [Pg.545]    [Pg.760]    [Pg.112]    [Pg.107]    [Pg.127]    [Pg.339]    [Pg.759]    [Pg.54]    [Pg.606]    [Pg.455]    [Pg.779]    [Pg.394]    [Pg.399]    [Pg.62]   
See also in sourсe #XX -- [ Pg.296 , Pg.311 ]




SEARCH



© 2024 chempedia.info