Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effectiveness factor measurements

Figure 10 shows that Tj is a unique function of the Thiele modulus. When the modulus ( ) is small (- SdSl), the effectiveness factor is unity, which means that there is no effect of mass transport on the rate of the catalytic reaction. When ( ) is greater than about 1, the effectiveness factor is less than unity and the reaction rate is influenced by mass transport in the pores. When the modulus is large (- 10), the effectiveness factor is inversely proportional to the modulus, and the reaction rate (eq. 19) is proportional to k ( ), which, from the definition of ( ), implies that the rate and the observed reaction rate constant are proportional to (1 /R)(f9This result shows that both the rate constant, ie, a measure of the intrinsic activity of the catalyst, and the effective diffusion coefficient, ie, a measure of the resistance to transport of the reactant offered by the pore stmcture, influence the rate. It is not appropriate to say that the reaction is diffusion controlled it depends on both the diffusion and the chemical kinetics. In contrast, as shown by equation 3, a reaction in solution can be diffusion controlled, depending on D but not on k. [Pg.172]

The mass transport influence is easy to diagnose experimentally. One measures the rate at various values of the Thiele modulus the modulus is easily changed by variation of R, the particle size. Cmshing and sieving the particles provide catalyst samples for the experiments. If the rate is independent of the particle size, the effectiveness factor is unity for all of them. If the rate is inversely proportional to particle size, the effectiveness factor is less than unity and

experimental points allow triangulation on the curve of Figure 10 and estimation of Tj and ( ). It is also possible to estimate the effective diffusion coefficient and thereby to estimate Tj and ( ) from a single measurement of the rate (48). [Pg.172]

Measure of averaging time Cyclic factor measured Measurement method with same averaging time Effect with same averaging time... [Pg.47]

The accountability expected of the predictive maintenance group is another factor that is critical to program effectiveness. If measures of program effectiveness are not established, neither management nor program personnel can determine if the program s potential is being achieved. [Pg.809]

The ratio of the overall rate of reaction to that which would be achieved in the absence of a mass transfer resistance is referred to as the effectiveness factor rj. SCOTT and Dullion(29) describe an apparatus incorporating a diffusion cell in which the effective diffusivity De of a gas in a porous medium may be measured. This approach allows for the combined effects of molecular and Knudsen diffusion, and takes into account the effect of the complex structure of the porous solid, and the influence of tortuosity which affects the path length to be traversed by the molecules. [Pg.635]

It will be shown, however, that the effectiveness factor does not critically depend on the shape of the particles, provided that their characteristic length is defined in an appropriate way. Some comparison is made be made between calculated results and experimental measurements with particles of frequently ill-defined shapes. [Pg.636]

Because most applications for micro-channel heat sinks deal with liquids, most of the former studies were focused on micro-channel laminar flows. Several investigators obtained friction factors that were greater than those predicted by the standard theory for conventional size channels, and, as the diameter of the channels decreased, the deviation of the friction factor measurements from theory increased. The early transition to turbulence was also reported. These observations may have been due to the fact that the entrance effects were not appropriately accounted for. Losses from change in tube diameter, bends and tees must be determined and must be considered for any piping between the channel plenums and the pressure transducers. It is necessary to account for the loss coefficients associated with singlephase flow in micro-channels, which are comparable to those for large channels with the same area ratio. [Pg.138]

Suppose that catalyst pellets in the shape of right-circular cylinders have a measured effectiveness factor of r] when used in a packed-bed reactor for a first-order reaction. In an effort to increase catalyst activity, it is proposed to use a pellet with a central hole of radius i /, < Rp. Determine the best value for RhjRp based on an effective diffusivity model similar to Equation (10.33). Assume isothermal operation ignore any diffusion limitations in the central hole, and assume that the ends of the cylinder are sealed to diffusion. You may assume that k, Rp, and eff are known. [Pg.379]

The pseudohomogeneous reaction term in Equation (11.42) is analogous to that in Equation (9.1). We have explicitly included the effectiveness factor rj to emphasis the heterogeneous nature of the catalytic reaction. The discussion in Section 10.5 on the measurement of intrinsic kinetics remains applicable, but it is now necessary to ensure that the liquid phase is saturated with the gas when the measurements are made. The void fraction s is based on relative areas occupied by the liquid and soUd phases. Thus,... [Pg.412]

If diffusion of reactants to the active sites in pores is slower than the chemical reaction, internal mass transfer is at least partly limiting and the reactant concentration decreases along the pores. This reduces the reaction rate compared to the rate at external surface conditions. A measure of the reaction rate decrease is the effectiveness factor, r, which has been defined as ... [Pg.286]

Microlevel. The starting point in multiphase reactor selection is the determination of the best particle size (catalyst particles, bubbles, and droplets). The size of catalyst particles should be such that utilization of the catalyst is as high as possible. A measure of catalyst utilization is the effectiveness factor q (see Sections 3.4.1 and 5.4.3) that is inversely related to the Thiele modulus (Eqn. 5.4-78). Generally, the effectiveness factor for Thiele moduli less than 0.5 are sufficiently high, exceeding 0.9. For the reaction under consideration, the particles size should be so small that these limits are met. [Pg.387]

Inspection of Fig. 15.3 reveals that while for jo 0.1 nAcm , the effectiveness factor is expected to be close to 1, for a faster reaction with Jo 1 p,A cm , it will drop to about 0.2. This is the case of internal diffusion limitation, well known in heterogeneous catalysis, when the reagent concentration at the outer surface of the catalyst grains is equal to its volume concentration, but drops sharply inside the pores of the catalyst. In this context, it should be pointed out that when the pore size is decreased below about 50 nm, the predominant mechanism of mass transport is Knudsen diffusion [Malek and Coppens, 2003], with the diffusion coefficient being less than the Pick diffusion coefficient and dependent on the porosity and pore stmcture. Moreover, the discrete distribution of the catalytic particles in the CL may also affect the measured current owing to overlap of diffusion zones around closely positioned particles [Antoine et ah, 1998]. [Pg.523]

Step 4 Estimate the effectiveness factor i) for the removal and the cleanup time required to obtain a residual toluene concentration of 150 mg/L. The phase distribution calculations carried out in Step 2 indicate that the equilibrium concentration of toluene in the gas phase is Ca equil = 109 mg/L (see Table 14.4). The concentration measured in the extracted air during the field tests is lower, at Q,flew = 78 mg/L, indicating that the removal effectiveness is limited either as a result of mass transfer phenomena or the existence of uncontaminated zones in the airflow pattern. The corresponding effectiveness factor is T = 78/109 = 0.716. [Pg.533]

In the laboratory, the measured rate constant for the first-order reaction would have to equal the product rjk if this constant were expressed per unit area of catalyst. This relationship then gives us an alternative interpretation of the effectiveness factor in terms of our model... [Pg.442]

ILLUSTRATION 12.2 DETERMINATION OF CATALYST EFFECTIVENESS FACTOR FOR THE CUMENE CRACKING REACTION FROM MEASUREMENT OF AN APPARENT RATE CONSTANT... [Pg.443]

The measured value of k Sg is 0.716 cm3/(sec-g catalyst) and the ratio of this value to k ltTueSg should be equal to our assumed value for the effectiveness factor, if our assumption was correct. The actual ratio is 0.175, which is at variance with the assumed value. Hence we pick a new value of rj and repeat the procedure until agreement is obtained. This iterative approach produces an effectiveness factor of 0.238, which corresponds to a differs from the experimental value (0.17) and that calculated by the cylindrical pore model (0.61). In the above calculations, an experimental value of eff was not available and this circumstance is largely responsible for the discrepancy. If the combined diffusivity determined in Illustration 12.1 is converted to an effective diffusivity using equation 12.2.9, the value used above corresponds to a tortuosity factor of 2.6. If we had employed Q)c from Illustration 12.1 and a tortuosity factor of unity to calculate eff, we would have determined that rj = 0.65, which is consistent with the value obtained from the straight cylindrical pore model in Illustration 12.2. [Pg.450]

J.5.2 Implications of the Effectiveness Factor Concept for Kinetic Parameters Measured in the Laboratory. It is useful at this point to discuss the effects of intraparticle diffusion on the kinetic parameters that are observed experimentally. Unless we are aware that intraparticle diffusion may obscure or disguise the... [Pg.453]

Using this definition of the Thiele modulus, the reaction rate measurements for finely divided catalyst particles noted below, and the additional property values cited below, determine the effectiveness factor for 0.5 in. spherical catalyst pellets fabricated from these particles. Comment on the reasons for the discrepancy between the calculated value of rj and the ratio of the observed rate for 0.5 in. pellets to that for fine particles. [Pg.462]

For G/S particle systems, enhancement in convective heat transfer is achieved at the expense of increased pressure drop in moving the gas at higher velocities. A measure of the relative benefit of enhanced heat transfer to added expenditure for fluid movement can be approximated by an effectiveness factor, E, defined as the ratio of the heat transfer coefficient to some kind of a pressure drop factor. For G/S systems in which particles are buoyed by the flowing gas stream, this pressure drop factor is expressed by the Archimedes number Ar, and E can be written... [Pg.506]

Before standards for indoor exposure to radon can be formally established, work is necessary to determine whether remedies are feasible and what is likely to be involved. Meanwhile, the Royal Commission on Environmental Pollution (RCEP) in the UK has considered standards for indoor exposure to radon decay products (RCEP, 1984). For existing dwellings, the RCEP has recommended an action level of 25 mSv in a year and that priority should be given to devising effective remedial measures. An effective dose equivalent of 25 mSv per year is taken to correspond to an average radon concentration of about 900 Bq m 3 or an average radon decay-product concentration of about 120 mWL, with the assumption of an equilibrium factor of 0.5 and an occupancy factor of 0.83. [Pg.536]

As a measure of how much the effective rate is lowered by the resistance to pore diffusion, the effectiveness factor qpore is used. This factor is defined as the ratio of the actual mean reaction rate within the pore to the maximum rate if not... [Pg.218]

The effectiveness factor rj, defined in equation 8.5-5, is a measure of the effectiveness of the interior surface of the particle, since it compares the observed rate through the particle as a whole with the intrinsic rate at the exterior surface conditions the latter would occur if there were no diffusional resistance, so that all parts of the interior surface were equally effective (at cA = cAs). To obtain T], since all A entering the particle reacts (irreversible reaction), the observed rate is given by the rate of diffusion across the permeable face at z = 0 ... [Pg.204]

The presence (or absence) of pore-diffusion resistance in catalyst particles can be readily determined by evaluation of the Thiele modulus and subsequently the effectiveness factor, if the intrinsic kinetics of the surface reaction are known. When the intrinsic rate law is not known completely, so that the Thiele modulus cannot be calculated, there are two methods available. One method is based upon measurement of the rate for differing particle sizes and does not require any knowledge of the kinetics. The other method requires only a single measurement of rate for a particle size of interest, but requires knowledge of the order of reaction. We describe these in turn. [Pg.208]


See other pages where Effectiveness factor measurements is mentioned: [Pg.59]    [Pg.28]    [Pg.59]    [Pg.28]    [Pg.449]    [Pg.172]    [Pg.172]    [Pg.765]    [Pg.78]    [Pg.231]    [Pg.302]    [Pg.1316]    [Pg.669]    [Pg.443]    [Pg.345]    [Pg.130]    [Pg.226]    [Pg.521]    [Pg.538]    [Pg.262]    [Pg.771]    [Pg.259]    [Pg.38]    [Pg.293]    [Pg.425]    [Pg.122]    [Pg.197]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Critical Factors Affect the Effectiveness of Safety Measures

Effect measure

Measurement factors

Nuclear Overhauser effect measurement, factor

© 2024 chempedia.info