Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic dyestuffs

France did not produce dyestuffs synthetically but had a large industry based on naturally occurring dyestuffs. Large plots of land in France—thousands of acres— were set aside to grow madder. The resulting dyestuff products in 1868 had such a wide market that nearly 80 million francs of income was gained annually from the... [Pg.176]

Uses Disinfectant solvent for wire enamels pharmaceuticals insecticides fungicides herbicides plasticizers mbber chemicals paints additives to lubricants and gasoline mfg. of polyphenylene oxide wetting agents dyestuff synthetic resin comonomer for alkali-resist, phenolic resins froth flotation agent engine cleaner ingred. [Pg.1421]

In 1925, Japanese imports of such dyestuffs amounted to 974 tons or 2.62 million yen (approximately 1.3 million U.S. dollars), which accounted for 31.8 percent in volume or 35.9 percent in value of the Japanese total imports of dyestuffs. Synthetic indigo ranked second in importance after aniline. I.G. Farben was dominant in the export of synthetic indigo to Japan with a 72.7-percent share, although Swiss, French, and American producers had already succeeded in commercializing the product after the First World War. For I.G. Farben, too, synthetic indigo was its second principal export item to Japan after aniline. ... [Pg.266]

Hydrogen peroxide in aqueous solution has many uses, because the products from its reaction are either water or oxygen, which are generally innocuous. The chief use is bleaching of textiles, both natural and synthetic, and of wood pulp for paper. Other uses are the oxidation of dyestuffs, in photography and in the production of... [Pg.281]

Chapters V-X deal respectively with Heterocyclic and Alicyclic Compounds Miscellaneous Reactions Organic Reagents in Inorganic and Organic Chemistry Dyestuffs, Indicators and Related Compounds Some Physiologically-Active Compounds and Synthetic Polymers. Many of these preparations are of course intended for advanced students, but a mere perusal of the experimental details of selected preparations by those whose time for experimental work is limited may assist to impress them on the memory. Attention is particularly directed to the chapter... [Pg.1193]

As early as 2500 bce m India indigo was used to dye cloth a deep blue The early Phoenicians discovered that a purple dye of great value Tyrian purple could be extracted from a Mediterranean sea snail The beauty of the color and its scarcity made purple the color of royalty The availability of dyestuffs underwent an abrupt change m 1856 when William Henry Perkin an 18 year old student accidentally discovered a simple way to prepare a deep purple dye which he called mauveme from extracts of coal tar This led to a search for other synthetic dyes and forged a permanent link between industry and chemical research... [Pg.4]

Qumones are colored p benzoqumone for example is yellow Many occur natu rally and have been used as dyes Alizarin is a red pigment extracted from the roots of the madder plant Its preparation from anthracene a coal tar derivative m 1868 was a significant step m the development of the synthetic dyestuff industry... [Pg.1012]

As the most reactive and economical source of the acetoacetyl moiety, diketene is used as a valuable synthetic intermediate in the manufacture of acetoacetic acid derivatives and heterocycHc compounds which are used as intermediates in the manufacture of dyestuffs, agrochemicals, pharmaceuticals, and polymers. [Pg.480]

Phthalocyanine Dyes. In addition to their use as pigments, the phthalocyanines have found widespread appHcation as dyestuffs, eg, direct and reactive dyes, water-soluble dyes with physical or chemical binding, solvent-soluble dyes with physical or chemical binding, a2o reactive dyes, a2o nonreactive dyes, sulfur dyes, and wet dyes. The first phthalocyanine dyes were used in the early 1930s to dye textiles like cotton (qv). The water-soluble forms Hke sodium salts of copper phthalocyanine disulfonic acid. Direct Blue 86 [1330-38-7] (Cl 74180), Direct Blue 87 [1330-39-8] (Cl 74200), Acid Blue 249 [36485-85-5] (Cl 74220), and their derivatives are used to dye natural and synthetic textiles (qv), paper, and leather (qv). The sodium salt of cobalt phthalocyanine, ie. Vat Blue 29 [1328-50-3] (Cl 74140) is mostly appHed to ceUulose fibers (qv). [Pg.506]

Sulfonic Acid-Based Dyestuffs. Sulfonic acid-derived dyes are utilized industrially in the areas of textiles (qv), paper, cosmetics (qv), foods, detergents, soaps, leather, and inks, both as reactive and disperse dyes. Of the principal classes of dyes, sulfonic acid derivatives find utiUty in the areas of acid, azoic, direct, disperse, and fiber-reactive dyes. In 1994, 120,930 t of synthetic dyes were manufactured in the United States, of which 5,600 t were acidic (74). The three largest manufacturers of sulfonic acid-based dyes for use in the United States are BASF, Bayer, and Ciba-Geigy. [Pg.100]

Miscellaneous. In ore flotation, sodium sulfite functions as a selective depressant. In textile processing, sodium sulfite is used as a bleach for wood (qv) and polyamide fibers and as an antichlor after the use of chlorine bleach. Synthetic appHcations of sodium sulfite include production of sodium thiosulfite by addition of sulfur and the introduction of sulfonate groups into dyestuffs and other organic products. Sodium sulfite is useful as a scavenger for formaldehyde in aminoplast—wood compositions, and as a buffer in chrome tanning of leather. [Pg.149]

A. S. Travis, The Eainbow Makers The Origins of the Synthetic Dyestuffs Industry in Western Europe Lehigh University Press, Bethlehem, Pa., 1993. [Pg.381]

Thiophene [110-02-1] and a number of its derivatives are significant in fine chemical industries as intermediates to many products for pharmaceutical, agrochemical, dyestuffs, and electronic appHcations. This article concentrates on the industrial, commercial, and economic aspects of the production and apphcations of thiophene and thiophene derivatives and details the main synthetic schemes to the parent ring system and simple alkyl and aryl derivatives. Functionalization of the ring and the synthesis of some functional derivatives that result, not from the parent ring system, but by direct ring cyclization reactions are also considered. Many good reviews on the chemistry of thiophene and thiophene derivatives are available (1 7). [Pg.17]

Dyestuffs. The use of thiophene-based dyestuffs has been largely the result of the access of 2-amino-3-substituted thiophenes via new cycHzation chemistry techniques (61). Intermediates of type (8) are available from development of this work. Such intermediates act as the azo-component and, when coupled with pyrazolones, aminopyrazoles, phenols, 2,6-dihydropyridines, etc, have produced numerous monoazo disperse dyes. These dyes impart yeUow—green, red—green, or violet—green colorations to synthetic fibers, with exceUent fastness to light as weU as to wet- and dry-heat treatments (62-64). [Pg.23]

Leather Tanning and Textiles. Although chromium (VT) compounds are the most important commercially, the bulk of the appHcations in the textile and tanning industries depend on the abiUty of Cr(III) to form stable complexes with proteins, ceUulosic materials, dyestuffs, and various synthetic polymers. The chemistry is complex and not well understood in many cases, but a common denominator is the coordinating abiUty of chromium (ITT) (see LEATHER Textiles). [Pg.146]

The appearance of synthetic fibers in the 1920s accelerated the further development of anthraquinone dyes. Soon after British Celanese succeeded in commerciali2ing cellulose acetate fiber in 1921, anthraquinone disperse dyes for this fiber were invented by Stepherdson (British Dyestuffs Corp.) and Celatenes (Scottish Dyes) independendy. Anthraquinone disperse dyes for polyester fiber were developed after the introduction of this fiber by ICI and Du Pont in 1952. These dyes were improved products of the disperse dyes that had been developed for cellulose acetate fiber 30 years before. [Pg.304]

The first synthetic dyestuff, mauveine, was discovered by Perkin in 1856 in the UK and led to many investigations of the derivatives of coal tar as potential coloring matters. The first dia2onium salt derived from picramic acid was prepared in 1858 and is still the basic chemistry behind coundess commercial products. Despite these inventions, in 1900 the vast majority of dyestuffs were still of natural origin. Now at the end of the century the situation has changed dramatically synthetic dyes dominate. [Pg.348]

In 1980, approximately 111,000 t of synthetic organic dyestuffs were produced in the United States alone. In addition, another 13,000 t were imported. The largest consumer of these dyes is the textile industry accounting for two-thirds of the market (246). Recent estimates indicate 12% of the synthetic textile dyes used yearly are lost to waste streams during dyestuff manufacturing and textile processing operations. Approximately 20% of these losses enter the environment through effluents from wastewater treatment plants (3). [Pg.384]

Flavones. These compounds are the most widely distributed natural coloring matter formerly used as dyestuffs. The term flavone was first suggested in 1895 (69), and is indicative of their yellow color ijlavus, Latin for yellow). They have lost their commercial value as dyes since the advent of synthetic dyes in 1856. [Pg.398]

There is also a large number of synthetic heterocyclic compounds with other important practical applications, as dyestuffs, copolymers, solvents, photographic sensitizers and developers, as antioxidants and vulcanization accelerators in the rubber industry, and many are valuable intermediates in synthesis. [Pg.47]

The largest user of phenol in the form of thermosetting resins is the plastics industry. Phenol is also used as a solvent and in the manufacture of intermediates for pesticides, pharmaceuticals, and dyestuffs. Styrene is used in the manufacture of synthetic rubber and polystyrene resins. Phthalic anhydride is used in the manufacture of DMT, alkyd resins, and plasticizers such as phthalates. Maleic anhydride is used in the manufacture of polyesters and, to some extent, for alkyd resins. Minor uses include the manufacture of malathion and soil conditioners. Nitrobenzene is used in the manufacture of aniline, benzidine, and dyestuffs and as a solvent in polishes. Aniline is used in the manufacture of dyes, including azo dyes, and rubber chemicals such as vulcanization accelerators and antioxidants. [Pg.55]


See other pages where Synthetic dyestuffs is mentioned: [Pg.4727]    [Pg.2527]    [Pg.4727]    [Pg.2527]    [Pg.144]    [Pg.391]    [Pg.420]    [Pg.426]    [Pg.428]    [Pg.458]    [Pg.468]    [Pg.38]    [Pg.5]    [Pg.21]    [Pg.100]    [Pg.425]    [Pg.432]    [Pg.45]    [Pg.85]    [Pg.432]    [Pg.449]    [Pg.270]    [Pg.350]    [Pg.369]    [Pg.374]    [Pg.375]    [Pg.381]    [Pg.384]    [Pg.395]    [Pg.444]   
See also in sourсe #XX -- [ Pg.501 ]




SEARCH



Dyestuffs

© 2024 chempedia.info