Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Drying minimum

Water- There are few data for water-undersaturated equilibria in the Ab-0r-QrH20 undersaturated system, particularly for the ternary minima. The best data are those of Steiner et al equilibria (1975), who investigated the system at 4 kb and presented results for the water-saturated and the dry systems see Table 3.6). Luth (1969) has estimated the position of the 10 kb dry minimum and Huang and WylUe (1975) have estimated the position of the 30 kb dry quartz-alkali feldspar field boundary. Figure 3.23 shows the positions of the minima in the dry system at 4 kb and 10 kb, which may be compared with positions of the eutectics in the hydrous system. [Pg.86]

General hydrodynamic theory for liquid penetrant testing (PT) has been worked out in [1], Basic principles of the theory were described in details in [2,3], This theory enables, for example, to calculate the minimum crack s width that can be detected by prescribed product family (penetrant, excess penetrant remover and developer), when dry powder is used as the developer. One needs for that such characteristics as surface tension of penetrant a and some characteristics of developer s layer, thickness h, effective radius of pores and porosity TI. One more characteristic is the residual depth of defect s filling with penetrant before the application of a developer. The methods for experimental determination of these characteristics were worked out in [4]. [Pg.613]

Let us consider the calculation of sensitivity threshold in the case when the cracks are revealing by PT method. Constant distance H between crack s walls along the whole defect s depth is assumed for the simplicity. The calculation procedure depends on the dispersity of dry developer s powder [1]. Simple formula has to be used in the case when developer s effective radius of pores IC, which depends mainly on average particle s size, is smaller than crack s width H. One can use formula (1) when Re is small enough being less than the value corresponding maximum sensitivity (0,25 - 1 pm). For example. Re = 0,25 pm in the case when fine-dispersed magnesia oxide powder is used as the developer. In this case minimum crack s width H that can be detected at prescribed depth lo is calculated as... [Pg.614]

Fig. VI-7. The force between two crossed mica cylinders in dry OMCTS. The cylinder radii R were about 1 cm. The dashed lines show the presumed, experimentally inaccessible, transition between a repulsive maximum and an attractive minimum. (From Ref. 68.)... Fig. VI-7. The force between two crossed mica cylinders in dry OMCTS. The cylinder radii R were about 1 cm. The dashed lines show the presumed, experimentally inaccessible, transition between a repulsive maximum and an attractive minimum. (From Ref. 68.)...
The oxime is freely soluble in water and in most organic liquids. Recrystallise the crude dry product from a minimum of 60-80 petrol or (less suitably) cyclohexane for this purpose first determine approximately, by means of a small-scale test-tube experiment, the minimum proportion of the hot solvent required to dissolve the oxime from about 0-5 g. of the crude material. Then place the bulk of the crude product in a small (100 ml.) round-bottomed or conical flask fitted with a reflux water-condenser, add the required amount of the solvent and boil the mixture on a water-bath. Then turn out the gas, and quickly filter the hot mixture through a fluted filter-paper into a conical flask the sodium chloride remains on the filter, whilst the filtrate on cooling in ice-water deposits the acetoxime as colourless crystals. These, when filtered anddried (either by pressing between drying-paper or by placing in an atmospheric desiccator) have m.p. 60 . Acetoxime sublimes rather readily when exposed to the air, and rapidly when warmed or when placed in a vacuum. Hence the necessity for an atmospheric desiccator for drying purposes. [Pg.94]

Distil the filtered ethereal solution, using a 100 ml. flask fitted with a dropping-funnel and a side-arm for the condenser observe all the normal precautions for ether distillation (p. 162) and run the ethereal solution into the flask as fast as the ether distils over. When all the ether has distilled off, detach and cool the flask, when the oily colourless residue of saligenin will rapidly crystallise. Weight of product, 5-0 g. m.p. 75-82°. Recrystallise either from a mixture of benzene and petroleum (b.p. 60-80°), or from a minimum of water, allowing the stirred aqueous solution to cool to 65-70° before chilling. The dry crystalline saligenin has m.p. 85-86°. [Pg.156]

If preferred, the following alternative procedure may be adopted. The absolute alcohol is placed in a 1 5 or 2 litre three-necked flask equipped with a double surface reflux condenser and a mercury-sealed mechanical stirrqr the third neck is closed with a dry stopper. The sodium is introduced and, when it has reacted completely, the ester is added and the mixture is gently refluxed for 2 hours. The reflux condenser is then rapidly disconnected and arranged for downward distillation with the aid of a short still head or knee tube. The other experimental details are as above except that the mixture is stirred during the distillation bumping is thus reduced to a minimum. [Pg.168]

Zinc cyanide. Solutions of the reactants are prepared by dis solving 100 g. of technical sodium cyanide (97-98 per cent. NaCN) in 125 ml. of water and 150 g. of anhydrous zinc chloride in the minimum volume of 50 per cent, alcohol (1). The sodium cyanide solution is added rapidly, with agitation, to the zinc chloride solution. The precipitated zinc cyanide is filtered off at the pump, drained well, washed with alcohol and then with ether. It is dried in a desiccator or in an air bath at 50°, and preserved in a tightly stoppered bottle. The yield is almost quantitative and the zinc cyanide has a purity of 95-98 per cent. (2). It has been stated that highly purified zinc cyanide does not react in the Adams modification of the Gattermann reaction (compare Section IV,12l). The product, prepared by the above method is, however, highly satisfactory. Commercial zinc cyanide may also be used. [Pg.201]

Place 125 ml. of concentrated ammonia solution (sp. gr. 0-88) in a 600 ml. beaker and surround the latter with crushed ice. Stir the ammonia solution mechanically, and introduce the n-caproyl chloride slowly by means of a suitably supported separatory funnel with bent stem. The rate of addition must be adjusted so that no white fumes are lost. The amide separates immediately. Allow to stand in the ice water for 15 minutes after all the acid chloride has been introduced. Filter oflF the amide at the pump use the flltrate to assist the transfer of any amide remaining in the beaker to the Alter (2). Spread the amide on sheets of Alter or drying paper to dry in the air. The crude n-capro-amide (30 g.) has m.p. 98-99° and is sufficiently pure for conversion into the nitrile (Section 111,112) (3). Recrystallise a small quantity of the amide by dissolving it in the minimum volume of hot water and allowing the solution to cool dry on filter paper in the air. Pure n-caproamide has m.p. 100°. [Pg.404]

Dissolve 10 g. of lactose (1) in 100 ml. of nitric acid, sp. gr. 115, in an evaporating dish and evaporate in a fume cupboard until the volume has been reduced to about 20 ml. The mixture becomes thick and pasty owing to the separation of mucic acid. When cold, dilute with 30 ml. of water, filter at the pump and set the filtrate A) aside. Wash the crude acid with cold water. Purify the mucic acid by dissolving it in the minimum volume of dilute sodium hydroxide solution and reprecipitating with dilute hydrochloric acid do not allow the temperature to rise above 25°. Dry the purified acid (about 5 g.) and determine the m.p. Mucic acid melts with decomposition at 212-213°. [Pg.453]

Preparation of the sulphones. Dissolve the 2 4-dinitrophenyl-sulphide in the minimum volume of warm glacial acetic acid and add 3 per cent, potassium permanganate solution with shaking as fast as decolourisation occurs. Use a 50 per cent, excess of potassium permanganate if the sulphide tends to precipitate, add more acetic acid. Just decolourise the solution with sulphur dioxide (or with sodium bisulphite or alcohol) and add 2-3 volumes of crushed ice. Filter off the sulphone, dry, and recrystaUise from alcohol. [Pg.501]

Dissolve equimolecular amounts of the hydrocarbon and styphnic acid in the minimum volume of hot acetic acid and allow to cool. Filter oflf the crystalline derivative which separates, wash it with a little acetic acid and dry in the air. Determine the m.p. Recrystallise from acetic acid and again determine the m.p. [Pg.519]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

Reduction of methyl orange to />-aminodimethylaniline. Method 1. Dissolve 2 0 g. of methyl orange in the minimum volume of hot water and to the hot solution add a solution of 8 g. of stannous chloride in 20 ml. of concentrated hydrochloric acid until decolourisation takes place gentle boiling may be necessary. Cool the resulting solution in ice a crystalline precipitate consisting of sulphanilic acid and some p-aminodimethylaniline hydrochloride separates out. In order to separate the free base, add 10 per cent, sodium hydroxide solution until the precipitate of tin hydroxide redisaolves. Extract the cold solution with three or four 20 ml. portions of ether, dry the extract... [Pg.624]

Dissolve 2-3 g. of methyl p-toluenesnlphonate in 10 ml. of dry benzene, add 1 g. of the amine, and boU the mixture for 20-30 minutes. Cool, and filter the precipitated quaternary salt. Recrystallise by dissolving the solid in the minimum volume of boiling ethyl alcohol and then adding ethyl acetate until crystallisation commences. Filter the cold mixture, dry rapidly on a porous plate, and determine the m.p. immediately. [Pg.660]

Phenolsulphonephthalein (phenol red). Mix 10 g. of o-sulpho-benzoic anhydride (Section VIII,9), 14 g. of pure phenol and 10 g. of freshly fused zinc chloride in a small conical flask. Place a glass rod in the flask and heat gently over a flame to melt the phenol. Then heat the flask containing the well-stirred mixture in an oil bath at 135-140° for 4 hours. Stir from time to time, but more frequently during the first hour if the mixture froths unduly, remove the flask from the bath, cool and then resume the heating. When the reaction is complete, add 50 ml. of water, allow the water to boil and stir to disintegrate the product. Filter the crude dye with suction and wash it well with hot water. Dissolve the residue in the minimum volume of warm (60°) 20 per cent, sodium hydroxide solution, filter, and just acidify the filtrate with warm dilute hydrochloric acid (1 1). Filter the warm solution, wash with water, and dry upon filter paper. The yield of phenol red (a brilliant red powder) is 11 g. [Pg.990]

Method B. Place 125 g. (106 -5 ml.) of diethyl phthalate and 25 g. of molecular sodium (sodium sand see Section 11,50,6) in a 500 ml. round-bottomed flask fitted with a reflux condenser and dropping funnel. Heat the flask on a steam bath and add a mixture of 122 5 g. (136 ml.) of dry ethyl acetate and 2 5 ml. of absolute ethanol over a period of 90 minutes. Continue the heating for 6 hours, cool and add 50 ml. of ether. Filter the sodium salt (VI) on a sintered glass funnel and wash it with the minimum volume of ether. Dissolve the sodium salt (96 g.) in 1400 ml. of hot water in a 3-htre beaker, cool the solution to 70°, stir vigorously and add 100 ml. of sulphuric acid (3 parts of concentrated acid to 1 part of... [Pg.994]

Apply the test to compounds which contain chlorine or bromine. If the compound is a solid, dissolve 0 1 g. in the minimum volume of pure, dry acetone. To 1 ml. of the sodium iodide acetone reagent add 2 drops of the compound (if a hquid) or the acetone solution (if a sohd). Shake and allow to stand at room temperature for 3 minutes. Note whether a precipitate is formed and also whether the solution acquires a reddish-brown colour (liberation of iodine). If no change takes place at rocrm temperature, place the test-tube in a beaker of water at 50°. After 5 minutes, cool to room temperature, and observe whether a reaction has occurred. [Pg.1060]

BATF permits no more acetic acid than 1.4 g/L in ted table and 1.2 g/L in white and dessert wines, Califotnia and the European Union slightly less. California requites a minimum fixed acidity as tartaric of 4.0 g/L for ted table, 3.0 g/L for white table, and 2.5 g/L for dessert wines. Califotnia also requites a minimum extract in dry wines of 18 g/L for ted and 17 g/L for white, but other states generally do not specify a minimum. In the United States, maximum total sulfur dioxide is 350 mg/L. Fat less is usually used today. European maxima ate lower for dry wines and higher for sweet table wines. [Pg.376]


See other pages where Drying minimum is mentioned: [Pg.54]    [Pg.54]    [Pg.70]    [Pg.54]    [Pg.54]    [Pg.70]    [Pg.140]    [Pg.841]    [Pg.213]    [Pg.306]    [Pg.313]    [Pg.140]    [Pg.143]    [Pg.263]    [Pg.513]    [Pg.586]    [Pg.587]    [Pg.623]    [Pg.625]    [Pg.719]    [Pg.735]    [Pg.764]    [Pg.839]    [Pg.877]    [Pg.927]    [Pg.179]    [Pg.210]    [Pg.3]    [Pg.375]    [Pg.12]    [Pg.287]    [Pg.287]    [Pg.446]    [Pg.44]    [Pg.296]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Minimum and maximum dry densities

Minimum drying time

© 2024 chempedia.info