Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Domain, of protein structure

Transcription factors that increase the rate of transcription usually have at least two domains of protein structure, a DNA-binding domain that recognizes the specific DNA control element to bind to, and an activation domain that interacts with other transcription factors or the RNA polymerase. Many transcription factors operate as dimers (homodimers or heterodimers) held together via dimerization domains. Some transcription factors interact with small ligands via a ligand-binding domain. [Pg.187]

What is meant by a domain of protein structure Give an example of a domain in a real protein. [Pg.106]

Although comparative modeling is the most accurate modeling approach, it is limited by its absolute need for a related template structure. For more than half of the proteins and two-thirds of domains, a suitable template structure cannot be detected or is not yet known [9,11]. In those cases where no useful template is available, the ab initio methods are the only alternative. These methods are currently limited to small proteins and at best result only in coarse models with an RMSD error for the atoms that is greater than 4 A. However, one of the most impressive recent improvements in the field of protein structure modeling has occurred in ab initio prediction [155-157]. [Pg.289]

On the basis of simple considerations of connected motifs, Michael Leviff and Cyrus Chothia of the MRC Laboratory of Molecular Biology derived a taxonomy of protein structures and have classified domain structures into three main groups a domains, p domains, and a/p domains. In ct structures the core is built up exclusively from a helices (see Figure 2.9) in p structures the core comprises antiparallel p sheets and are usually two P sheets packed... [Pg.31]

Figure 4.21 The polypeptide chain of the arabinose-binding protein in E. coli contains two open twisted a/P domains of similar structure. A schematic diagram of one of these domains is shown in (a). The two domains are oriented such that the carboxy ends of the parallel P strands face each other on opposite sides of a crevice in which the sugar molecule binds, as illustrated in the topology diagram (b). [(a) Adapted from J. Richardson.)... Figure 4.21 The polypeptide chain of the arabinose-binding protein in E. coli contains two open twisted a/P domains of similar structure. A schematic diagram of one of these domains is shown in (a). The two domains are oriented such that the carboxy ends of the parallel P strands face each other on opposite sides of a crevice in which the sugar molecule binds, as illustrated in the topology diagram (b). [(a) Adapted from J. Richardson.)...
The immunoglobulin structure in Figure 6.45 represents the confluence of all the details of protein structure that have been thus far discussed. As for all proteins, the primary structure determines other aspects of structure. There are numerous elements of secondary structure, including /3-sheets and tight turns. The tertiary structure consists of 12 distinct domains, and the protein adopts a heterotetrameric quaternary structure. To make matters more interesting, both intrasubunit and intersubunit disulfide linkages act to stabilize the discrete domains and to stabilize the tetramer itself. [Pg.205]

Similar residues in the cores of protein structures especially hydrophobic residues at the same positions, are responsible for common folds of homologous proteins. Certain sequence profiles of conserved residue successions have been identified which give rise to a common fold of protein domains. They are organized in the smart database (simple modular architecture research tool) http //smait.embl-heidelberg.de. [Pg.778]

Proteins derive their powerful and diverse capacity for molecular recognition and catalysis from their ability to fold into defined secondary and tertiary structures and display specific functional groups at precise locations in space. Functional protein domains are typically 50-200 residues in length and utilize a specific sequence of side chains to encode folded structures that have a compact hydrophobic core and a hydrophilic surface. Mimicry of protein structure and function by non-natural ohgomers such as peptoids wiU not only require the synthesis of >50mers with a variety of side chains, but wiU also require these non-natural sequences to adopt, in water, tertiary structures that are rich in secondary structure. [Pg.18]

The second mode of toxicity is postulated to involve the direct interaction of the epidithiodiketopiperazine motif with target proteins, forming mixed disulfides with cysteine residues in various proteins. Gliotoxin, for example, has been demonstrated to form a 1 1 covalent complex with alcohol dehydrogenase [13b, 17]. Epidithiodi-ketopiperazines can also catalyze the formation of disulfide bonds between proxi-mally located cysteine residues in proteins such as in creatine kinase [18]. Recently, epidithiodiketopiperazines have also been implicated in a zinc ejection mechanism, whereby the epidisulfide can shuffle disulfide bonds in the CHI domain of proteins, coordinate to the zinc atoms that are essential to the tertiary structure of that domain, and remove the metal cation [12d, 19],... [Pg.214]

The description of protein structure as presented thus far may lead to the conclusion that proteins are static, rigid structures. This is not the case. A protein s constituent atoms are constantly in motion, and groups ranging from individual amino acid side chains to entire domains can be displaced via random motion by anything up to approximately 0.2 nm. A protein s conformation, therefore, displays a limited degree of flexibility, and such movement is termed breathing . [Pg.28]

Protein domains are the common currency of protein structure and function. Protein domains are discrete structural units that fold up to form a compact globular shape. Experiments on protein structure and function have been greatly aided by consideration of the modular nature of proteins. This has allowed very large proteins to be studied. The expression of individual domains has allowed the intractable giant muscle protein titin to be structurally studied (Pfuhl and Pastore, 1995). Protein domains can be found in a variety of contexts, (Fig. 1), in association with a range of unrelated domains and in a variety of orders. Ultimately protein domains are defined at the level of three-dimensional structure however, many protein domains have been described at the level of sequence. The success of sequence-based methods has been demonstrated by numerous confirmations, by elucidation of the three-dimensional structure of the domain. [Pg.138]

Inspection of protein structures can show which regions of a protein form compact globular structure and hence the domains of the protein. Several methods can be used to automatically extract domain definitions from three-dimensional structures (Holm and Sander, 1995 Islam et al.,... [Pg.139]

Prosite is perhaps the best known of the domain databases (Hofmann et al., 1999). The Prosite database is a good source of high quality annotation for protein domain families. Prosite documentation includes a section on the functional meaning of a match to the entry and a list of example members of the family. Prosite documentation also includes literature references and cross links to other databases such as the PDB collection of protein structures (Bernstein et al., 1977). For each Prosite document, there is a Prosite pattern, profile, or both to detect the domain family. The profiles are the most sensitive detection method in Prosite. The Prosite profiles provide Zscores for matches allowing statistical evaluation of the match to a new protein. Profiles are now available for many of the common protein domains. Prosite profiles use the generalized profile software (Bucher et al., 1996). [Pg.144]

The use of sequence information to frame structural, functional, and evolutionary hypotheses represents a major challenge for the postgeno-mic era. Central to an understanding of the evolution of sequence families is the concept of the domain a structurally conserved, genetically mobile unit. When viewed at the three-dimensional level of protein structure, a domain is a compact arrangement of secondary structures connected by linker polypeptides. It usually folds independently and possesses a relatively hydrophobic core (Janin and Chothia, 1985). The importance of domains is that they cannot be divided into smaller units— they represent a fundamental building block that can be used to understand the evolution of proteins. [Pg.185]

The catalytic domain of protein kinase A has a two lobe structure, composed of a smaller lobe with a large portion of P-sheet structures and a larger lobe that is mostly a-helical. All Ser/Thr- and Tyr-specific protein kinases structurally characterized to date show a similar domain structure. [Pg.252]

Zang, G., Kazanietz, M.G., Blumberg, EM. and Hurley, J.H. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester (1995) Cell 81, 917-924... [Pg.285]

The catalytic center of the protein tyrosine phosphatases includes ca. 230 amino acids and contains the conserved sequence motif HA -C-(X)5-R-S/T-G/A/P (X is any amino acid) which is involved in phosphate binding and in catalysis and is part of a loop known as the P loop. The available structural data on the catalytic domains of protein tyrosine phosphatases indicate that the mechanism shown schematically in Fig. 8.17 is likely (see Tainer and Russell, 1994). The invariant Cys and Arg residues of the P loop have a central function in binding and cleavage of the phosphate residue. [Pg.314]

Many examples of recurring domain or motif structures are available, and these reveal that protein tertiary structure is more reliably conserved than primary sequence. The comparison of protein structures can thus provide much information about evolution. Proteins with significant primary sequence similarity, and/or with demonstrably similar structure and function, are said to be in the same protein family. A strong evolutionary relationship is usually evident within a protein family. For example, the globin family has many different proteins with both structural and sequence similarity to myoglobin (as seen in the proteins used as examples in Box 4-4 and again in the next chapter). Two or more families with little primary sequence similarity sometimes make use of the same major structural... [Pg.141]

Structural domains of proteins are sometimes encoded by a single coding segment of DNA i.e., by a single exon in a split gene. Domains of this type may have served as evolutionarily mobile modules that have spread to new proteins and multiplied during evolution. For example, the immunoglobulin structural domain is found not only in antibodies but also in a variety of cell surface proteins.229 252... [Pg.74]


See other pages where Domain, of protein structure is mentioned: [Pg.190]    [Pg.160]    [Pg.322]    [Pg.190]    [Pg.160]    [Pg.322]    [Pg.298]    [Pg.62]    [Pg.394]    [Pg.473]    [Pg.491]    [Pg.6]    [Pg.142]    [Pg.377]    [Pg.137]    [Pg.137]    [Pg.139]    [Pg.245]    [Pg.249]    [Pg.97]    [Pg.89]    [Pg.437]    [Pg.367]    [Pg.381]    [Pg.158]    [Pg.135]    [Pg.52]    [Pg.142]    [Pg.750]    [Pg.13]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Domain of protein

Domain structure

Domains protein

Protein domains structures

Protein structural domains

Structural domains

Structure of proteins

© 2024 chempedia.info