Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distribution coefficients exchange

Instead of using separation data may be expressed in terms of a volume distribution coefficient ) , which is defined as the amount of solution in the exchanger per cubic centimeter of resin bed divided by the amount per cubic centimeter in the liquid phase. The relation between and is given by ... [Pg.1116]

The distribution coefficient is an equilibrium constant and, therefore, is subject to the usual thermodynamic treatment of equilibrium systems. By expressing the distribution coefficient in terms of the standard free energy of solute exchange between the phases, the nature of the distribution can be understood and the influence of temperature on the coefficient revealed. However, the distribution of a solute between two phases can also be considered at the molecular level. It is clear that if a solute is distributed more extensively in one phase than the other, then the interactive forces that occur between the solute molecules and the molecules of that phase will be greater than the complementary forces between the solute molecules and those of the other phase. Thus, distribution can be considered to be as a result of differential molecular forces and the magnitude and nature of those intermolecular forces will determine the magnitude of the respective distribution coefficients. Both these explanations of solute distribution will be considered in this chapter, but the classical thermodynamic explanation of distribution will be treated first. [Pg.47]

Example. A mixture of ca 0.05 mmole each of chloride and bromide ions is to be separated on an anion exchange column of length 10 cm and 1cm2 cross-section, using 0.035M potassium nitrate as the eluant. The distribution coefficients (Kd) for the chloride and bromide ions respectively are 29 and 65. [Pg.196]

One of the most rational means for displacing a broad zone is electrolyte desorption under the conditions of decreasing degree of ionization, i.e., when counterions are converted into dipolar ions, uncharged molecules and coions. This conversion corresponds to a sharp decrease in distribution coefficients of the desorbed substance. Hence, the displacement of equilibrium parame ters at a high rate of mass-exchange is one of the methods of selective stepwise chromatography. [Pg.44]

Fig. 2a-c. Kinetic zone diagram for the catalysis at redox modified electrodes a. The kinetic zones are characterized by capital letters R control by rate of mediation reaction, S control by rate of subtrate diffusion, E control by electron diffusion rate, combinations are mixed and borderline cases b. The kinetic parameters on the axes are given in the form of characteristic currents i, current due to exchange reaction, ig current due to electron diffusion, iji current due to substrate diffusion c. The signpost on the left indicates how a position in the diagram will move on changing experimental parameters c% bulk concentration of substrate c, Cq catalyst concentration in the film Dj, Dg diffusion coefficients of substrate and electrons k, rate constant of exchange reaction k distribution coefficient of substrate between film and solution d> film thickness (from ref. [Pg.64]

Another material based on the crown ether extractant 4,4 (5 )-bis(t-butyl-cyclohexano)-18 crown-6, marketed under the name Sr-Spec, is useful for separations involving divalent cations including Pb, Ba, and Ra (Horwitz et al. 1991). For Ra analysis by TIMS, Ra-Ba separations are required because the presence of Ba drastically decreases the ionization efficiency of fg Ra samples from 10% to <1%. This material has been widely used for separations of Ra from Ba (e.g., Chabaux et al. 1994 Lundstrom et al. 1998 Rihs et al. 2000 Joannon and Pin 2001 Pietruszka et al. 2002) and is a complement or alternative to cation exchange separations for EDTA complexes of these elements (Volpe et al. 1991 Cohen and O Nions 1991). Sr-Spec material would also be useful for °Pb analysis, since Pb has a greater distribution coefficient than Sr with this extractant. [Pg.28]

In closing, recovery of technetium from waste solution should be touched upon. Studies of the base hydrolysis of technetium P-diketone complexes revealed that all of the complexes studied decompose in an alkaline solution even at room temperature, until technetium is finally oxidized to pertechnetate. These phenomena are very important for the management of technetium in waste solutions. Since most metal ions precipitate in alkaline solution, only technetium and some amphoteric metal ions can be present in the filtrate [29]. A further favorable property of pertechnetate is its high distribution coefficient to anion exchangers. Consequently, it is possible to concentrate and separate technetium with anion exchangers from a large volume of waste solution this is especially effective using an alkaline solution [54],... [Pg.273]

In this chapter, we consider several simple models of ion sorption and exchange that can be applied within the context of a geochemical model. These models include distribution coefficients, Freundlich and Langmuir isotherms, and ion exchange theory. In the following chapter (Chapter 10), we consider surface com-plexation theory, which is more complicated but in some ways more robust than the models presented here. [Pg.137]

The semi-empirical descriptions of adsorbate/solid interactions are based on net changes in system composition and, unlike surface complexation models, do not explicitly identify the details of such interactions. Included in this group are distribution coefficients (Kp) and apparent adsorbate/proton exchange stoichiometries. Distribution coefficients are derived from the simple association reaction... [Pg.163]

Tanimizu M, Asada Y, Hirata T (2002) Absolute isotopic composition and atomic weight of commercial zinc using inductively coupled plasma mass spectrometry. Anal Chem 74 5814-5819 Van der Walt TN, Strelow FWE, Verheij R (1985) The influence of crosslinkage on the distribution coefficients and anion exchange behavior of some elements in hydrochloric acid. Solvent Extract Ion Exchange 3 723-740... [Pg.428]

Pertechnetate in neutral and alkaline media can be extracted into solutions of tetra-alkylammonium iodides in benzene or chloroform. With tetra-n-heptylammo-nium iodide (7.5 x 10 M) in benzene distribution coefficients up to 18 can be obtained . A solution of fV-benzoyl-iV-phenylhydroxylamine (10 M) in chloroform can be used to extract pertechnetate from perchloric acid solution with a distribution coefficient of more than 200, if the concentration of HCIO is higher than 6 M The distribution of TcO between solutions of trilauryl-ammonium nitrate in o-xylene and aqueous solutions of nitrate has been measured. In 1 M (H, Li) NOj and 0.015 M trilaurylammonium nitrate the overall equilibrium constant has been found to be log K = 2.20 at 25 °C. The experiments support an ion exchange reaction . Pertechnetate can also be extracted with rhodamine-B hydrochloride into organic solvents. The extraction coefficient of Tc (VII) between nitrobenzene containing 0.005 %of rhodamine-B hydrochloride and aqueous alcoholic " Tc solution containing 0.0025 % of the hydrochloride, amounts to more than 5x10 at pH 4.7 . [Pg.124]

The ratio of the distribution coefficients of pertechnetate and perrhenate is about 1.6 to 2, comparable to adjacent rare earth metals. Technetium and rhenium may be separated by ion-exchange chromatography. However, efficient separations require some care and tend to be slow. On the other hand, cation exchange resins adsorb technetiiun only to a negligible extent so that pertechnetate can be rapidly separated from cationic elements . [Pg.127]

The chromatographic separation of technetium from molybdenum is based on the different extent to which molybdate and pertechnetate are adsorbed from alkaline and acid solutions. The distribution coefficient of molybdate between the anion exchanger Dowex 1-X8 and 3 M NaOH is 12, while it is 10 for pertechnetate under the same conditions. Molybdate is also adsorbed to a much lesser extent from hydrochloric acid solutions than pertechnetate. Thus, molybdemun can be eluted by hydroxide or HCl solutions while nitric acid, perchlorate or thiocyanate are used for the elution of technetium . [Pg.128]

First consider the system in which no diffusion potential is formed in the membrane. The membrane potential is then determined by the conditions at the membrane/aqueous electrolyte solution boundary. In the simplest situation, a salt of a monovalent ion-exchanger ion, anion A", with monovalent determinand cation J is dissolved in the membrane. In order for this system to be the basis for a usable ISE with Nemstian response to the determinand ion in a sufficiently broad activity interval, it is necessary that the distribution coefficient kj be... [Pg.36]

Figure 5,65 Garnet-clinopyroxene geothermometric exchange (Fe +-Mg +). Thermodynamic constant K is compared with distribution coefficient K the difference between the two terms represents the effect of interactions in mixtures. Reprinted from J. Ganguly, Geochimica et Cosmochimica Acta, 43, 1021-1029, copyright 1979, with kind permission from Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK. Figure 5,65 Garnet-clinopyroxene geothermometric exchange (Fe +-Mg +). Thermodynamic constant K is compared with distribution coefficient K the difference between the two terms represents the effect of interactions in mixtures. Reprinted from J. Ganguly, Geochimica et Cosmochimica Acta, 43, 1021-1029, copyright 1979, with kind permission from Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.
One other parameter characterizing the ion exchange is the concentration- [8] or weight-based [9] distribution coefficient K = CJC, where and represent the concentrations of analytes in the stationary and mobile phases, respectively. [Pg.386]

The cation exchanger in the H fornt required to separate Ca 2 ions from 1 dm3 of 01N CaC12 are The adsorption effect of an ion is characterised by the distribution coefficient... [Pg.166]

The lonsiv ion exchange resins are extraction technologies used to separate radionuclides from alkaline wastewater in the presence of competing cations. These resins include lonsiv IE-910 and lonsiv IE-911, which are manufactured using a new class of crystalline silicotitanates (CSTs) invented by researchers from Sandia National Laboratory (SNL) and Texas A M University. CSTs demonstrate high distribution coefficients in acidic, neutral, and alkaline solutions with high concentrations of competitive ions such as sodium and potassium. The affinity of CSTs for strontium in neutral or alkaline wastes is also high. [Pg.1102]

Schugerl 115] has recently furnished a detail analysis of the reactive extraction of penicdlin-G and V and precursors like phenyl and phenoxy acetic acids. Thirty different amines have been studied for reactive extraction of penicillins 116] in various solvents such as butyl acetate, chloroform, di-isopropyl ether, kerosene, dioctyl ether, etc. Tertiary amines in n-butyl acetate were found to be advantageous because of their low reactivity with solvent but the distribution coefficients of their complexes are significantly lower than those of secondary amines. While using quaternary ammonium salts for ion-exchange extraction, re-extraction is difficult and very large amounts of anion (e.g.. Cl ) are needed to recover penicillins. The basic relationship for distribution coefficient and extraction kinetics have now been fairly developed for amine-penicillin systems. [Pg.217]

Equilibrium is established for each sample component between the eluent and stationary phases when a sample is introduced into the ion-exchange chromatography. The distribution of component (A) between the two phases is expressed by the distribution coefficient, "Da". [Pg.36]


See other pages where Distribution coefficients exchange is mentioned: [Pg.1115]    [Pg.47]    [Pg.778]    [Pg.866]    [Pg.44]    [Pg.44]    [Pg.258]    [Pg.623]    [Pg.625]    [Pg.500]    [Pg.502]    [Pg.154]    [Pg.250]    [Pg.1384]    [Pg.155]    [Pg.181]    [Pg.3]    [Pg.164]    [Pg.167]    [Pg.92]    [Pg.626]    [Pg.99]    [Pg.36]    [Pg.101]    [Pg.344]    [Pg.411]    [Pg.293]    [Pg.221]   


SEARCH



Distribution coefficient

Distribution coefficient anion-exchange resin

Distribution coefficient cation-exchange resin

Distribution coefficients anion exchange

Exchange coefficient

Ion exchange selectivity distribution coefficient

© 2024 chempedia.info