Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Towers distillation process

Parameter Estimation Relational and physical models require adjustable parameters to match the predicted output (e.g., distillate composition, tower profiles, and reactor conversions) to the operating specifications (e.g., distillation material and energy balance) and the unit input, feed compositions, conditions, and flows. The physical-model adjustable parameters bear a loose tie to theory with the limitations discussed in previous sections. The relational models have no tie to theory or the internal equipment processes. The purpose of this interpretation procedure is to develop estimates for these parameters. It is these parameters hnked with the model that provide a mathematical representation of the unit that can be used in fault detection, control, and design. [Pg.2573]

It is doubtful if any design is entirely novel. The antecedence of most designs can usually be easily traced. The first motor cars were clearly horse-drawn carriages without the horse and the development of the design of the modern car can be traced step by step from these early prototypes. In the chemical industry, modem distillation processes have developed from the ancient stills used for rectification of spirits and the packed columns used for gas absorption have developed from primitive, brushwood-packed towers. So, it is not often that a process designer is faced with the task of producing a design for a completely novel process or piece of equipment. [Pg.4]

In the atmospheric distillation process (Figure 2.1), heated crude oil is separated in a distillation column (distillation tower, fractionating tower, atmospheric pipe still) into streams which are then purified, transformed, adapted, and treated... [Pg.35]

Prefractionation is an optional distillation process to separate economic quantities of very light distillates from the crude oil. Lower temperatures and higher pressures are used than in atmospheric distillation. Some process water can be carried over to the prefractionation tower from the desalting process. [Pg.242]

The centrifugal supercontactor developed by Podbieiniak (46) is another fractionation apparatus in which centrifugal force is applied to the distillation process. The principal feature of the unit is a rotating spiral passageway which permits the employment of vapor velocities from 50 to 70 times greater than are possible without excessive entrainment in a bubble tray tower. [Pg.210]

A separation process is sought that can satisfy both our present economic and enviromental constraints. It would also provide an alternative to present practice that relies on expensive azeotropic or extractive distillation processes used in the recovery of products from low relative volatility streams. As an example, virtually all industrial butadiene recovery processes now rely on extractive distillation using acetonitrile or other equivalent agent to enhance the relative volatility of the C4 components. The use of supercritical or near critical separation of these streams may satisfy these requirements provided certain pressure, temperature and recompression criteria can be met. Such a process would also reduce the need for a complex train of distillation towers. [Pg.213]

An example of the dehydration process is the Kvaemer Chemetics process that uses concentrated sulphuric acid to eliminate the azeotrope and enable colorless, strong nitric acid up to 99% to be distilled from the mixed acids. The residual acid leaving the bottom of the processing tower is approximately 70% sulphuric acid101. [Pg.229]

The distillation process is not used for the narrow-cut fractionation. However, by passing a second time through the distillation tower the... [Pg.1711]

Fractional distillation is used for separations in many industrial processes. In this Pennsylvania plant, atmospheric air is liquefied by cooling and compression and then is separated by distillation in towers. This plant produces more than 1000 tons daily of gases from air (nitrogen, oxygen, and argon). [Pg.562]

Take a mixture of two or more chemicals in a temperature regime where both have a significant vapor pressure. The composition of the mixture in the vapor is different from that in the liquid. By harnessing this difference, you can separate two chemicals, which is the basis of distillation. To calculate this phenomenon, though, you need to predict thermodynamic quantities such as fugacity, and then perform mass and energy balances over the system. This chapter explains how to predict the thermodynamic properties and then how to solve equations for a phase separation. While phase separation is only one part of the distillation process, it is the basis for the entire process. In this chapter you will learn to solve vapor-liquid equilibrium problems, and these principles are employed in calculations for distillation towers in Chapters 6 and 7. Vapor-liquid equilibria problems are expressed as algebraic equations, and the methods used are the same ones as introduced in Chapter 2. [Pg.25]

CDTech uses catalytic distillation to convert isobutene and methanol to MTBE, where the simultaneous reaction and fractionation of MTBE reactants and products takes place [51], A block diagram of this process is shown in Figure 3.31. The C4 feed from catalytic crackers undergoes fractionation to extract deleterious nitrogen compounds. It is then mixed with methanol in a BP reactor where 90% of the equilibrium reaction takes place. The reactor effluent is fed to the catalytic distillation (CD) tower where an overall isobutene conversion of 97% is achieved. The catalyst used is a conventional ion-exchange resin. This process selectively removes MTBE from the product to overcome the chemical equilibrium limitation of the reversible reaction. The MTBE product stream is further fiactionated to remove pentanes, which are sent to gasoline blending, whereas the raffinate from the catalytic distillation tower is washed with water and then fractionated to recover the methanol. [Pg.163]

With the availability of economical and efficient packings, packed towers are finding increasing use in new distillation processes and for retrofitting existing trayed towers. They are particularly useful in applications where pressure drop must be low, as in low-pressure distillation, and where liquid holdup must be small, such as when distilling heat-sensitive materials whose exposure to high temperatures must be minimized. [Pg.360]

Side columns are used, for instance, in the most important distillation processes worldwide, the fractionation of air (see Fig. 11.2-18) and the distillation of cmde oil (Meyers 1996). The atmospheric tower of oil refineries consists of a main column and four stripping side columns (Fig. 11.2-12). In this tower the crude oil is split into six fractions which are processed further in several subsequent columns. Oil refineries also have some other interesting features. Steam is fed into the bottom of the main column and most of the side columns. This causes a stripping effect and reduces the temperatures in the columns (steam distillation). The overhead fractions of all side columns are fed into the main colunrn thus increasing the vapor flow there. So-called pump arounds effect a partial condensation of the vapor in the main column and, in turn, a reduction of the vapor flow rates in the upper sections. [Pg.611]

The main problem in distillation process control is to separate and purify chemical components in liquid and vapor streams while shedding the disturbances that are imposed on the distillation column. The opportunity is to separate the components from a feed stream into new vapor and liquid streams that have increased economic value at a cost that is competitive with other producers. Conducting research in a large corporation provides the opportunity to apply the results of improved performance to many distillation towers in many different businesses. [Pg.3]

In industry many of the distillation processes involve the separation of more than two components. The general principles of design of multicomponent distillation towers are the same in many respects as those described for binary systems. There is one mass balance for each component in the multicomponent mixture. Enthalpy or heat balances are made which are similar to those for the binary case. Equilibrium data are used to calculate boiling points and dew points. The concepts of minimum reflux and total reflux as limiting cases are also used. [Pg.679]

The solvent laden air gathered in the process is then sent to solvent recovery. This is a relatively simple process whereby the air is passed through a vessel containing activated charcoal. The charcoal absorbs the evaporated solvent and the air is passed into the atmosphere. The charcoal is then flushed with steam and the solvents recovered in a cracking tower as part of a distillation process. [Pg.1584]

A distillation process uses a complex arrangement of systems that includes a cooling-tower system, pump-and-feed system, preheat system, product storage system, compressed-air system, steam-generation system, and complex instrument control system. (See Figure 10-3.) Each of these stand-alone systems is designed to support a specific part of the distillation process. Each... [Pg.228]

In this section we will develop several performance diagrams for the distillation process shown in Figure 18.16. The tower is the separation unit, and the two phases needed for the separation are provided by the condenser and reboiler. [Pg.604]


See other pages where Towers distillation process is mentioned: [Pg.317]    [Pg.86]    [Pg.308]    [Pg.493]    [Pg.149]    [Pg.2]    [Pg.823]    [Pg.5]    [Pg.171]    [Pg.727]    [Pg.560]    [Pg.468]    [Pg.802]    [Pg.595]    [Pg.2]    [Pg.450]    [Pg.241]    [Pg.57]    [Pg.164]    [Pg.244]    [Pg.178]    [Pg.958]    [Pg.604]   
See also in sourсe #XX -- [ Pg.219 , Pg.220 ]




SEARCH



Distillation process

Distillation tower

Towers The Distillation Process

© 2024 chempedia.info