Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersion polymerization stabilizers

Many volatile low-molecular-weight organics are completely miscible with carbon dioxide at relatively modest temperatures and pressures. However, nonvolatile compounds or those with higher molecular weights, especially polymers, are often insoluble. Insoluble liquid compounds may be dispersed into CO2 with the aid of appropriate surfactants to form a kinetically stable o/c emulsion [10,11]. Stable emulsions are important in separation processes, heterogeneous reactions and materials formation processes, such as precipitation with a compressed fluid antisolvent [40]. These emulsions are the precursors to solid latex particles in dispersion polymerization. Stabilization of o/c emulsions has been studied in-situ to understand surfactant design for polymerization [10,11]. [Pg.135]

J. L. Moilliet, B. Collie, and W. Black, Surface Activity, E. F. N. Spon, London, 1961. D. H. Napper, Polymeric Stabilization of Colloidal Dispersions, Academic, New York,... [Pg.528]

Mapper D H 1983 Polymeric Stabilization of Colloidal Dispersions (London Academic)... [Pg.2692]

Aqueous Dispersions. The dispersion is made by the polymerization process used to produce fine powders of different average particle sizes (58). The most common dispersion has an average particle size of about 0.2 p.m, probably the optimum particle size for most appHcations. The raw dispersion is stabilized with a nonionic or anionic surfactant and concentrated to 60—65 wt % soHds by electrodecantation, evaporation, or thermal concentration (59). The concentrated dispersion can be modified further with chemical additives. The fabrication characteristics of these dispersions depend on polymerization conditions and additives. [Pg.350]

Nonaqueous Dispersion Polymerization. Nonaqueous dispersion polymers are prepared by polymerizing a methacryhc monomer dissolved in an organic solvent to form an insoluble polymer in the presence of an amphipathic graft or block copolymer. This graft or block copolymer, commonly called a stabilizer, lends coUoidal stabiUty to the insoluble polymer. Particle sizes in the range of 0.1—1.0 pm were typical in earlier studies (70), however particles up to 15 pm have been reported (71). [Pg.268]

Monosized polystyrene particles in the size range of 2-10 /am have been obtained by dispersion polymerization of styrene in polar solvents such as ethyl alcohol or mixtures of alcohol with water in the presence of a suitable steric stabilizer (59-62). Dispersion polymerization may be looked upon as a special type of precipitation polymerization and was originally meant to be an alternative to emulsion polymerization. The components of a dispersion polymerization include monomers, initiator, steric stabilizer, and the dispersion medium... [Pg.15]

The function of emulsifier in the emulsion polymerization process may be summarized as follows [45] (1) the insolubilized part of the monomer is dispersed and stabilized within the water phase in the form of fine droplets, (2) a part of monomer is taken into the micel structure by solubilization, (3) the forming latex particles are protected from the coagulation by the adsorption of monomer onto the surface of the particles, (4) the emulsifier makes it easier the solubilize the oligomeric chains within the micelles, (5) the emulsifier catalyzes the initiation reaction, and (6) it may act as a transfer agent or retarder leading to chemical binding of emulsifier molecules to the polymer. [Pg.196]

Figure 9 The schematical representation of dispersion polymerization process, (a) initially homogeneous dispersion medium (b) particle formation and stabilizer adsorption onto the nucleated macroradicals (c) capturing of radicals generated in the continuous medium by the forming particles and monomer diffusion to the forming particles (d) polymerization within the monomer swollen latex particles, (e) latex particle stabilized by steric stabilizer and graft copolymer molecules (f) list of symbols. Figure 9 The schematical representation of dispersion polymerization process, (a) initially homogeneous dispersion medium (b) particle formation and stabilizer adsorption onto the nucleated macroradicals (c) capturing of radicals generated in the continuous medium by the forming particles and monomer diffusion to the forming particles (d) polymerization within the monomer swollen latex particles, (e) latex particle stabilized by steric stabilizer and graft copolymer molecules (f) list of symbols.
Some typical dispersion polymerization recipes and the electron micrograph of the uniform polymeric particles with Recipe I are given in Table 5 and Fig. 10, respectively. As seen in Table 5, the alcohols or alcohol-water mixtures are usually utilized as the dispersion media for the dispersion polymerization of apolar monomers. In order to achieve the monodispersity in the final product, a costabilizer can be used together with a primary steric stabilizer, which is usually in the polymeric form as in... [Pg.202]

We also studied the effect of initiator on the dispersion polymerization of styrene in alcohol-water media by using a shaking reactor system [89]. We used AIBN and polyacrylic acid as the initiator and the stabilizer, respectively. Three different homogenous dispersion media including 90% alcohol and 10% water (by volume) were prepared by using isopropanol, 1-butanol, and 2-... [Pg.203]

The same PVP series were also tried for the dispersion polymerization of styrene in the ethanol medium by using AIBN as the initiator and aerosol OT as the costabilizer [84]. PVP K-15 usually yielded polymeric particles with a certain size distribution and some coagu-lum. The uniform products were obtained with PVP K-30 and PVP K-90 in the presence of the costabilizer. The tendencies for the variation of the final particle size with the stabilizer concentration and with the molecular weight of the stabilizer were consistent with those obtained for the dispersion polymerization of methyl methacrylate [84],... [Pg.205]

Paine et al. [99] tried different stabilizers [i.e., hydroxy propylcellulose, poly(N-vinylpyrollidone), and poly(acrylic acid)] in the dispersion polymerization of styrene initiated with AIBN in the ethanol medium. The direct observation of the stained thin sections of the particles by transmission electron microscopy showed the existence of stabilizer layer in 10-20 nm thickness on the surface of the polystyrene particles. When the polystyrene latexes were dissolved in dioxane and precipitated with methanol, new latex particles with a similar surface stabilizer morphology were obtained. These results supported the grafting mechanism of stabilization during dispersion polymerization of styrene in polar solvents. [Pg.205]

We have also examined the effect of stabilizer (i.e., polyacrylic acid) on the dispersion polymerization of styrene (20 ml) initiated with AIBN (0.14 g) in an isopropanol (180 ml)-water (20 ml) medium [93]. The polymerizations were carried out at 75 C for 24 h, with 150 rpm stirring rate by changing the stabilizer concentration between 0.5-2.0 g/dL (dispersion medium). The electron micrographs of the final particles and the variation of the monomer conversion with the polymerization time at different stabilizer concentrations are given in Fig. 12. The average particle size decreased and the polymerization rate increased by the increasing PAAc concentra-... [Pg.205]

Figure 12 The electron micrographs of the final particles and the variation of the monomer conversion with the time at different stabilizer concentrations in the dispersion polymerization of styrene. Stabilizer concentration (g/dL) (a) 0.5, (b) 1.0, (c) 2.0. The original SEM photographs were taken with 2600 x, 2000 x, and 2600 x magnifications for (a), (b), and (c), respectively, and reduced at a proper ratio to place the figure. (From Ref. 93. Reproduced with permission from John Wiley Sons, Inc.)... Figure 12 The electron micrographs of the final particles and the variation of the monomer conversion with the time at different stabilizer concentrations in the dispersion polymerization of styrene. Stabilizer concentration (g/dL) (a) 0.5, (b) 1.0, (c) 2.0. The original SEM photographs were taken with 2600 x, 2000 x, and 2600 x magnifications for (a), (b), and (c), respectively, and reduced at a proper ratio to place the figure. (From Ref. 93. Reproduced with permission from John Wiley Sons, Inc.)...
Paine et al. [85] extensively studied the effect of solvent in the dispersion polymerization of styrene in the polar media. In their study, the dispersion polymerization of styrene was carried out by changing the dispersion medium. They used hydroxypropyl cellulose (HPC) as the stabilizer and its concentration was fixed to 1.5% within a series of -alcohols tried as the dispersion media. The particle size increased from only 2.0 /itm in methanol to about 8.3 /itm in pentanol, and then decreased back to 1 ixm in octadecanol. The particle size values plotted against the Hansen solubility parameters... [Pg.206]

Almog et al. [80] studied the dispersion polymerization of styrene in different alcohols as the continuous medium by using AIBN and vinyl alcohol-vinyl acetate copolymer as the initiator and the stabilizer, respectively. Their results showed that the final particle size decreased with the alcohol type according to the following order ... [Pg.207]

Okubo et al. [87] used AIBN and poly(acrylic acid) (Mw = 2 X 10 ) as the initiator and the stabilizer, respectively, for the dispersion polymerization of styrene conducted within the ethyl alcohol/water medium. The ethyl alcohol-water volumetric ratio (ml ml) was changed between (100 0) and (60 40). The uniform particles were obtained in the range of 100 0 and 70 30 while the polydisperse particles were produced with 35 65 and especially 60 40 ethyl alcohol-water ratios. The average particle size decreased form 3.8 to 1.9 /xm by the increasing water content of the dispersion medium. [Pg.207]

In another study, uniform composite polymethyl-methacrylate/polystyrene (PMMA/PS) composite particles in the size range of 1-10 fim were prepared by the seeded emulsion polymerization of styrene [121]. The PMMA seed particles were initially prepared by the dispersion polymerization of MMA by using AIBN as the initiator. In this polymerization, poly(7V-vinyl pyrolli-done) and methyl tricaprylyl ammonium chloride were used as the stabilizer and the costabilizer, respectively, in the methanol medium. Seed particles were swollen with styrene monomer in a medium comprised of seed particles, styrene, water, poly(7V-vinyl pyrollidone), Polywet KX-3 and aeorosol MA emulsifiers, sodium bicarbonate, hydroquinone inhibitor, and azobis(2-methylbu-... [Pg.219]

D. H. Napper, Polymeric Stabilization of Colloidal Dispersion, Academic Press, New York (1983). [Pg.683]

Energetic composites can be considered as particle-dispersed polymeric matrices. The mechanical properties of these systems are crucial to their dimensional and ballistic stability. Their ability to deform without rupture and to recover is important for successful performance. [Pg.714]

Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, New York... [Pg.70]


See other pages where Dispersion polymerization stabilizers is mentioned: [Pg.111]    [Pg.111]    [Pg.449]    [Pg.282]    [Pg.16]    [Pg.360]    [Pg.189]    [Pg.201]    [Pg.201]    [Pg.202]    [Pg.203]    [Pg.203]    [Pg.204]    [Pg.204]    [Pg.207]    [Pg.207]    [Pg.209]    [Pg.210]    [Pg.211]    [Pg.211]    [Pg.212]    [Pg.212]    [Pg.218]    [Pg.218]    [Pg.222]    [Pg.205]    [Pg.797]    [Pg.797]    [Pg.797]   
See also in sourсe #XX -- [ Pg.612 ]

See also in sourсe #XX -- [ Pg.278 , Pg.280 ]




SEARCH



Dispersed stability

Dispersibility stabilization)

Dispersion polymerization

Dispersion polymerization dispersions

Dispersion stability

Dispersions stabilization

Polymeric dispersity

Polymeric stabilization

Polymeric stabilizers)

Polymerization Stabilizer

Self-stabilized dispersion polymerization

Stabilizer for dispersion polymerization,

Stabilizing polymeric dispersants

Stabilizing polymeric dispersants

© 2024 chempedia.info