Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersion Liquid film reaction

Reaction between an absorbed solute and a reagent lowers the equilibrium partial pressure of the solute and thus increases the rate of mass transfer. The mass transfer coefficient likewise may be enhanced which contributes further to increased absorption rate. Three modes of contacting gas and liquid phases are possible The gas is dispersed as bubbles in the liquid, the liquid is dispersed as droplets, the two phases are contacted on a thin liquid film deposited over a packing or wall. The choice between these modes is an important practical problem. [Pg.812]

The individual mass transfer and reaction steps outlined in Fig. 4.15 will now be described quantitatively. The aim will be firstly to obtain an expression for the overall rate of transformation of the reactant, and then to examine each term in this expression to see whether any one step contributes a disproportionate resistance to the overall rate. For simplicity we shall consider the gas to consist of just a pure reactant A, typically hydrogen, and assume the reaction which takes place on the interior surface of the catalyst particles to be first order with respect to this reactant only, i.e. the reaction is pseudo first-order with rate constant A ,. In an agitated tank suspended-bed reactor, as shown in Fig. 4.20, the gas is dispersed as bubbles, and it will be assumed that the liquid phase is well-mixed , i.e. the concentration CAL of dissolved A is uniform throughout, except in the liquid films immediately surrounding the bubbles and the particles. (It will be assumed also that the particles are not so extremely small that some are present just beneath the surface of the liquid within the diffusion film and are thus able to catalyse the reaction before A reaches the bulk of the liquid.)... [Pg.235]

It is common to carry out reactions in dispersed liquid-liquid systems. The rates of such reactions show different dependences on the intensity of agitation depending on whether the reaction occurs in a bulk phase, within the diffusion film, or at the interface [9]. [Pg.114]

Reactive absorption processes present essentially a combination of transport phenomena and reactions taking place in a two-phase system with an interface. Because of their multicomponent nature, reactive absorption processes are affected by a complex thermodynamic and diffusional coupling which, in turn, is accompanied by simultaneous chemical reactions [14—16], Generally, the reaction has to be considered both in the bulk and in the film region. Modeling of hydrodynamics in gas-liquid contactors includes an appropriate description of axial dispersion, liquid hold-up and pressure drop. [Pg.270]

When (a) there are no external mass-transfer resistances (such as gas-liquid, liquid solid, etc.), (b) catalysts are all effectively wetted, (< ) there is no radial or axial dispersion in the liquid phase, (d) a gaseous reactant takes part in the reaction and its concentration in the liquid film is uniform and in excess, (e) reaction occurs only at the liquid-solid interface, (/) no condensation or vaporization of the reactant occurs, and (g) the heat effects are negligible, i.e., there is an isothermal operation, then a differential balance on such an ideal plug-flow trickle-bed reactor would give... [Pg.105]

Ariga et al. [48] have investigated the behavior of the monolith reactor in which Echerichia coli with P-galactosidase or Saccharomyces cerevisiae was immobilized within a thin film of K-carragcenan gel deposited on the channel wall. The effects of mass transfer resistance and axial dispersion on the conversion were studied. Those authors found that the monolith reactor behaved like the plug-flow reactor. The residence-time distribution in this reactor was comparable to four ideally mixed tanks in series. The influence of gas evolution on liquid film resistance in the monolith reactor was also investigated. It was shown that at low superficial gas velocities, the gas bubble may adhere to the wall, which decreases the effective surface area available for the reaction. The authors concluded that the reactor was very effective in the reaction systems accompanied by gas evolution, such as fermentations. [Pg.260]

Let us assume that the reaction takes place in one of the phases say L2. The ideal choice for the parameter = L2/5L2a is dictated by the same considerations as for gas-liquid systems cf. Fig. 17. To achieve high values of we should disperse phase LI in the form of drops in the continuous phase L2. Low values of could be achieved by dispersing L2 in the form of drops in the continuous phase LI. Thin liquid film flow, as encountered in gas-liquid systems (cf. Fig. 16), though not impossible, is unusual in liquid-liquid systems. [Pg.224]

This is a subject of considerable complexity. For a comprehensive treatment, see Astarita et al. (1983). First we will introduce a method for analyzing such a problem numerically (following Froment and Bischoff (1979)). Consider a packed column with the gas flowing up and the chemically reactive liquid flowing down. There are two major distinctions to be kept in mind the nature ofthe flow (axial dispersion/diffusion present or not) whether the reaction takes place completely in the liquid film or in the bulk liquid as well. [Pg.702]

The authors [13] also proposed a multiphase mass transport model for toluene nitration, the details of, which are given in Fig. 2.4. It is based on the formation of a thin aqueous film aroimd the hydrophilic catalyst particles, which are dispersed in toluene medium. The model also accounted for the existence of vapor phase over the liquid-liquid-solid reaction medium. The major mass transfer resistances are offered by the liquid film around the catalyst particles and in the catalyst pores. The aqueous film and the liquid in the pores constitute the micro environment necessary to facilitate the desired level of lattice transformation in the catalyst particles. Figure 2.4 also shows the concept of the microenvironment within and around the catalyst particle. These studies have demonstrated that shape selectively effect of zeolite Beta catalyst is significantly enhanced by the specific microenvironment created within and around the catalyst particles. This has significantly enhanced the para-selectivity from 0.7 to 1.5. The microenvironment has also improved the accessibility of reactant molecules to the catalyst active sites. [Pg.48]

Film-forming chemical reactions and the chemical composition of the film formed on lithium in nonaqueous aprotic liquid electrolytes are reviewed by Dominey [7], SEI formation on carbon and graphite anodes in liquid electrolytes has been reviewed by Dahn et al. [8], In addition to the evolution of new systems, new techniques have recently been adapted to the study of the electrode surface and the chemical and physical properties of the SEI. The most important of these are X-ray photoelectron spectroscopy (XPS), SEM, X-ray diffraction (XRD), Raman spectroscopy, scanning tunneling microscopy (STM), energy-dispersive X-ray spectroscopy (EDS), FTIR, NMR, EPR, calorimetry, DSC, TGA, use of quartz-crystal microbalance (QCMB) and atomic force microscopy (AFM). [Pg.420]

Equations describing the transfer rate in gas-liquid dispersions have been derived and solved, based on the film-, penetration-, film-penetration-, and more advanced models for the cases of absorption with and without simultaneous chemical reaction. Some of the models reviewed in the following paragraphs were derived specifically for gas-liquid dispersion, whereas others were derived for more general cases of two-phase contact. [Pg.334]

The parameter p (= 7(5 ) in gas-liquid sy.stems plays the same role as V/Aex in catalytic reactions. This parameter amounts to 10-40 for a gas and liquid in film contact, and increases to lO -lO" for gas bubbles dispersed in a liquid. If the Hatta number (see section 5.4.3) is low (below I) this indicates a slow reaction, and high values of p (e.g. bubble columns) should be chosen. For instantaneous reactions Ha > 100, enhancement factor E = 10-50) a low p should be selected with a high degree of gas-phase turbulence. The sulphonation of aromatics with gaseous SO3 is an instantaneous reaction and is controlled by gas-phase mass transfer. In commercial thin-film sulphonators, the liquid reactant flows down as a thin film (low p) in contact with a highly turbulent gas stream (high ka). A thin-film reactor was chosen instead of a liquid droplet system due to the desire to remove heat generated in the liquid phase as a result of the exothermic reaction. Similar considerations are valid for liquid-liquid systems. Sometimes, practical considerations prevail over the decisions dictated from a transport-reaction analysis. Corrosive liquids should always be in the dispersed phase to reduce contact with the reactor walls. Hazardous liquids are usually dispensed to reduce their hold-up, i.e. their inventory inside the reactor. [Pg.388]

Reactions carried in aqueous multiphase catalysis are accompanied by mass transport steps at the L/L- as well as at the G/L-interface followed by chemical reaction, presumably within the bulk of the catalyst phase. Therefore an evaluation of mass transport rates in relation to the reaction rate is an essential task in order to gain a realistic mathematic expression for the overall reaction rate. Since the volume hold-ups of the liquid phases are the same and water exhibits a higher surface tension, it is obvious that the organic and gas phases are dispersed in the aqueous phase. In terms of the film model there are laminar boundary layers on both sides of an interphase where transport of the substrates takes place due to concentration gradients by diffusion. The overall transport coefficient /cl can then be calculated based on the resistances on both sides of the interphase (Eq. 1) ... [Pg.175]


See other pages where Dispersion Liquid film reaction is mentioned: [Pg.274]    [Pg.178]    [Pg.393]    [Pg.126]    [Pg.93]    [Pg.153]    [Pg.205]    [Pg.2352]    [Pg.237]    [Pg.408]    [Pg.133]    [Pg.210]    [Pg.220]    [Pg.159]    [Pg.621]    [Pg.374]    [Pg.96]    [Pg.313]    [Pg.52]    [Pg.38]    [Pg.297]    [Pg.148]    [Pg.317]    [Pg.657]    [Pg.100]    [Pg.201]    [Pg.2238]    [Pg.215]    [Pg.357]    [Pg.791]    [Pg.796]    [Pg.391]    [Pg.299]    [Pg.213]    [Pg.284]    [Pg.332]    [Pg.55]   
See also in sourсe #XX -- [ Pg.828 , Pg.829 ]




SEARCH



Dispersive liquids

Liquid film reaction

Liquid films

© 2024 chempedia.info