Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disperse systems, polymers

Evaluation of Mechanical Properties Viscosity of Shear-Sensitive Materials Dispersed Systems Polymer Solutions Viscoelasticity... [Pg.749]

M. Date. The piezoelectric constant for dispersed systems, Polymer J. 8 60 (1976). [Pg.433]

Dmg loading can be accompHshed by dispersion or adsorption. In dispersed systems, a dmg is blended into a polymer by mechanical means, such as a kneader. The viscosity of the polymer, and the size and concentration of the dmg, need to be optimized to minimize aggregates. Dmgs can also be absorbed by equiUbrating a polymer in a dmg solution. The absorption rate can be accelerated by introducing an appropriate solvent to swell the polymer. AH solvents would then have to be removed. [Pg.234]

Over the past years considerable attention has been paid to the dispersing system since this controls the porosity of the particle. This is important both to ensure quick removal of vinyl chloride monomer after polymerisation and also to achieve easy processing and dry blendable polymers. Amongst materials quoted as protective colloids are vinyl acetate-maleic anhydride copolymers, fatty acid esters of glycerol, ethylene glycol and pentaerythritol, and, more recently, mixed cellulose ethers and partially hydrolysed polyfvinyl acetate). Much recent emphasis has been on mixed systems. [Pg.316]

Fridman ML, Yanovsky YuG (1975) In Rheology of polymer and dispersed systems and rheophysics. Minsk, p 189... [Pg.63]

It should be noted that this is quite an unusual law, since in other known cases durability of solids is expressed by stronger laws, namely, exponential or power laws. Thus, in the given example we cannot give a unified definition of yield stress. The work cited is the only published observation of the durability of a filler s structure in dispersion systems. Therefore at present it is difficult to say how much such phenomena are typical for filled polymers, but we cannot exclude them. [Pg.73]

In order to complete the discussion of methodical problems, we should mention two more methods of determining yield stress. Figure 6 shows that for plastic disperse systems with low-molecular dispersion medium, when a constant rate of deformation, Y = const., is given, the dependence x on time t passes through a maximum rm before a stationary value of shear stress ts is reached. We may assume that the value of the maximal shear stress xm is the maximum strength of the structure which must be destroyed so that the flow can occur. Here xm as well as ts do not depend or depend weakly on y, like Y. The difference between tm and xs takes into account the difference between maximum stress and yield stress. For filled polymer melts at low shear rates Tm Ts> i,e- fhese quantities can be identified with Y. [Pg.76]

Gas-filled plastics are polymer materials — disperse systems of the solid-gas type. They are usually divided into foam plastics (which contain mostly closed pores and cells) and porous plastics (which contain mostly open communicating pores). Depending on elasticity, gas-filled plastics are conventionally classified into rigid, semi-rigid, and elastic, categories. In principle, they can be synthesized on the basis of any polymer the most widely used materials are polystyrene, polyvinyl chloride, polyurethanes, polyethylene, polyepoxides, phenol- and carbamideformaldehyde resins, and, of course, certain organosilicon polymers. [Pg.100]

Disperse systems can also be classified on the basis of their aggregation behavior as molecular or micellar (association) systems. Molecular dispersions are composed of single macromolecules distributed uniformly within the medium, e.g., protein and polymer solutions. In micellar systems, the units of the dispersed phase consist of several molecules, which arrange themselves to form aggregates, such as surfactant micelles in aqueous solutions. [Pg.244]

For suspensions primarily stabilized by a polymeric material, it is important to carefully consider the optimal pH value of the product since certain polymer properties, especially the rheological behavior, can strongly depend on the pH of the system. For example, the viscosity of hydrophilic colloids, such as xanthan gums and colloidal microcrystalline cellulose, is known to be somewhat pH- dependent. Most disperse systems are stable over a pH range of 4-10 but may flocculate under extreme pH conditions. Therefore, each dispersion should be examined for pH stability over an adequate storage period. Any... [Pg.258]

J Wang, I Ghebre-Sellassie. Aqueous polymer dispersions as film formers. In HA Lieberman, MM Rieger, GS Banker, eds. Pharmaceutical Dosage Forms Disperse Systems, Yol. 3. 2nd ed. New York Marcel Dekker, 1998, pp 129-161. [Pg.284]

The foundations of the theory of flocculation kinetics were laid down early in this century by von Smoluchowski (33). He considered the rate of (irreversible) flocculation of a system of hard-sphere particles, i.e. in the absence of other interactions. With dispersions containing polymers, as we have seen, one is frequently dealing with reversible flocculation this is a much more difficult situation to analyse theoretically. Cowell and Vincent (34) have recently proposed the following semi-empirical equation for the effective flocculation rate constant, kg, ... [Pg.20]

In studying the stability of colloidal dispersions it is of considerable advantage if the particles concerned are monodisperse and spherical. For aqueous, charge-stabilised systems polymer latices have proved invaluable in this regard. With non-aqueous systems, steric stabilisation is usually required. In this case it... [Pg.281]

Flocculation rate limitation. The adsorption step was rate limiting for the overall flocculation process in this system. Polymer adsorption rate measurements for dispersed systems reported in the literature (2,26) do not lend themselves to direct comparisons with the present work due to lack of information on shear rates, flocculation rates, and particle and polymer sizes. Gregory (12) proposed that the adsorption and coagulation halftimes, tA and t, respectively, should be good indications of whether or not the adsorption step is expected to be rate limiting. The halftimes, tA and t, are defined as the times required to halve the initial concentrations of polymer and particles, respectively. Adsorption should not limit the flocculation rate if... [Pg.441]

As another case study a process synthesis of an emulsion polymerization process is given (Hurme and Heikkila, 1998). In emulsion polymerization unsaturated monomers or their solutions are dispersed in a continuous phase with the aid of an emulsifier and polymerized. The product is a dispersion of polymers and called a latex. The raw materials are highly flammable unsaturated hydrocarbons and the reaction is exothermic which both cause a risk. The main phases and systems in an emulsion polymerization plant are listed in Table 31. [Pg.115]

While conductivities of nanocarbons dispersed in polymers fall short of those of metals, a variety of applications can be unlocked by turning an insulating matrix into a conductor, which requires only small volume fractions that can therefore keep the system viscosity at a level compatible with composite processing techniques. Of particular interest are novel functionalities of these conductive matrices that exploit the presence of a conductive network in them, such as structural health monitoring (SHM) based on changes in electrical resistance of the nanocarbon network as it is mechanically deformed [30]. [Pg.233]

The value in units of incident dose per unit area for either a positive or negative resist system is of little value unless accompanied by a detailed description of the conditions under which it was measured. This description should include, at the minimum, the initial film thickness, the characteristics of the substrate, the temperature and time of the post- and pre-bake, the characteristics of the exposing radiation, and the developer composition, time and temperature. The structure, copolymer ratio, sequence distribution, molecular weight, and dispersity of polymers included in the formulation should also be provided. [Pg.107]

Dispersion system 1 g of low-molecular-weight poly(vinyl alcohol) which serves both as dispersing agent and protective colloid, is dissolved in about 150 ml of distilled water in a narrow 600 ml beaker. It is stirred with a paddle stirrer at room temperature for about 2 h until dissolved.The polymer used should be a partially (88%) hydrolyzed poly(vinyl acetate), a 4% aqueous solution of which has a viscosity of 4 cP. [Pg.295]


See other pages where Disperse systems, polymers is mentioned: [Pg.233]    [Pg.42]    [Pg.1]    [Pg.233]    [Pg.42]    [Pg.1]    [Pg.3]    [Pg.268]    [Pg.515]    [Pg.309]    [Pg.210]    [Pg.219]    [Pg.434]    [Pg.245]    [Pg.281]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.94]    [Pg.360]    [Pg.412]    [Pg.154]    [Pg.140]    [Pg.455]    [Pg.142]    [Pg.25]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 ]




SEARCH



Dispersant, polymers

Disperse systems

Dispersed systems

Dispersed systems, dispersions

Dispersive systems

Drug-delivery systems, polymer dispersions

Polymer Dispersants

Polymer dispersed

Polymers dispersion

© 2024 chempedia.info