Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diphenols, reactions

In contrast, the diphenol reactions leading to a blue-purple color are in wide use for sialic acid determinations. Sialic acids are heated either with orcinol and Fe3+ (the Bial reagent23), or with resorcinol and Cu2+ (Refs. 30 and 120) in concentrated hydrochloric acid.107 In 1903,... [Pg.153]

Epoxy Resins. The chemistry of epoxy resin adhesives is quite varied. However, the most widely used is that formed from the reaction of 4,4 -isopropyhdene diphenol (bisphenol A) [80-05-7] and epichlorohydrin [106-89-8] C H CIO. This epoxy resin is more commonly known as... [Pg.232]

Liquid crystal polyesters are made by a different route. Because they are phenoHc esters, they cannot be made by direct ester exchange between a diphenol and a lower dialkyl ester due to unfavorable reactivities. The usual method is the so-called reverse ester exchange or acidolysis reaction (96) where the phenoHc hydroxyl groups are acylated with a lower aHphatic acid anhydride, eg, acetic or propionic anhydride, and the acetate or propionate ester is heated with an aromatic dicarboxyHc acid, sometimes in the presence of a catalyst. The phenoHc polyester forms readily as the volatile lower acid distills from the reaction mixture. Many Hquid crystal polymers are derived formally from hydroxyacids (97,98) and thein acetates readily undergo self-condensation in the melt, stoichiometric balance being automatically obtained. [Pg.295]

Polycarbonates. Polyarjiates are aromatic polyesters commonly prepared from aromatic dicarboxylic acids and diphenols. One of the most important polyarylates is polycarbonate, a polyester of carbonic acid. Polycarbonate composite is extensively used in the automotive industry because the resin is a tough, corrosion-resistant material. Polycarbonates (qv) can be prepared from aUphatic or aromatic materials by two routes reaction of a dihydroxy compound with phosgene accompanied by Hberation ofHCl(eq. 5) ... [Pg.37]

Coumarin can also be formed by the reaction of phenol with diketene (40). Similarly, diphenols can react with hydroxycarboxyUc acids or beta-ketoesters to give hydroxycoumaria derivatives. The reaction of resorciaol with malic acid produces umbeUiferone (7-hydroxycoumaria) and its reaction with ethyl acetoacetate gives beta-methylumbeUiferone (7-hydroxy-4-methylcoumaria). [Pg.321]

Hydroxycoumarias can be obtained by reaction of methyl acrylate [96-33-3] with diphenols ia the preseace of aluminum chloride followed by dehydrogeaatioa with palladium oa carboa (43). [Pg.321]

Acid chlorides are useful reagents, but when the pyrazole is N- unsubstituted a dimerization occurs and the diketopiperazine (254) is isolated (Section 4.04.2.3.3(x)). However, (254) reacts with many compounds as an acid chloride would, for example with amines to yield amides (67HC(22)l). The difunctional pyrazole derivative (441) affords polymers by reaction with diphenols (69RRC763). Cyanopyrazoles can be hydrolyzed to the corresponding carboxylic acids (68CB829). [Pg.260]

Diphenol/thiophenol is one of the most important polymer precursors for synthesis of poly(aryl ethers) or poly-(aryl sulfides) in displacement polymerizations. Commonly used bisphenols are 4,4 -isopropylidene diphenol or bisphenol-A (BPA) due to their low price and easy availability. Other commercial bisphenols have also been reported [7,24,25]. Recently, synthesis of poly(aryl ethers) by the reaction of new bisphenol monomers with activated aromatic dihalides has been reported. The structures of the polymer precursors are described in Table 2. Poly(aryl ether phenylquinoxalines) have been synthesized by Connell et al. [26], by the reaction of bisphenols containing a preformed quinoxaline ring with... [Pg.37]

Diphenol carbonate is produced by the reaction of phosgene and phenol. A new approach to diphenol carbonate and non-phosgene route is by the reaction of CO and methyl nitrite using Pd/alumina. Dimethyl carbonate is formed which is further reacted with phenol in presence of tetraphenox titanium catalyst. Decarbonylation in the liquid phase yields diphenyl carbonate. [Pg.338]

Epoxy resins are produced by reacting epichlorohydrin and a diphenol. Bisphenol A is the diphenol generally used. The reaction, a ring... [Pg.344]

Phenolic compounds are weaker nucleophiles and better leaving groups than aliphatic alcohols. They do not yield polyesters when reacted with carboxylic acids or alkyl carboxy lates. The synthesis of polyesters from diphenols is, therefore, generally carried out through the high-temperature carboxylic acid-aryl acetate or phenyl ester-phenol interchange reactions with efficient removal of reaction by-product (Schemes 2.10 and 2.11, respectively). [Pg.62]

Solution reactions between diacid chlorides and diols or diphenols are carried out in THF or CH2C12 at —10 to 30°C in die presence of tertiary amines such as triethylamine or pyridine, which play a role of both reaction catalyst and HC1 acceptor (Scheme 2.26). This synthetic mediod is also termed acceptor-catalytic polyesterification.295-297 High-temperature solution reactions have also been reported for a number of less soluble, generally semicrystalline, aromatic polyesters.6 They yield high-molar-mass polyesters exhibiting good mechanical properties and thermal stability. [Pg.75]

Activating agents, such as trifluoroacetic anhydride 1,1 -carbonyldiimidazolc carbodiimides sulfonyl, tosyl, and picryl chlorides and a range of phosphorus derivatives can promote direct solution reactions between dicarboxylic acids and diols or diphenols in mild conditions. The activating agents are consumed during the reaction and, therefore, do not act as catalysts. These so-called direct polycondensation or activation polycondensation reactions proceed via the in situ transformation of one of the reactants, generally the carboxylic acid, into a more... [Pg.77]

However, many salts such as the hydroquinone or biphenol salt are so insoluble diat they do not work well by this procedure. Furthermore, a stoichiometric amount of base used for die reaction is critical to obtain high-molecular-weight polymers. Moreover, die sd ong base may undesirably hydrolyze the dihalides to afford deactivated diphenolates, which upset the stoichiometry. Clendining et al. reported that potassium carbonate or bicarbonate could be used in these reactions instead of corresponding hydroxides.60 McGrath and co-workers were the first to systematically study die use of the weak base K2C03 instead of a strong base to obtain phenolate salts.8,61,62 Potassium carbonate was found to be better than... [Pg.337]

The nucleophilic aromatic substitution reaction for the synthesis of poly(arylene ether ketone)s is similar to that of polysulfone, involving aromatic dihalides and aromatic diphenolates. Since carbonyl is a weaker electron-withdrawing group titan sulfonyl, in most cases, difluorides need to be used to afford high-molecular-weight polymers. Typically potassium carbonate is used as a base to avoid the... [Pg.340]

Acid anhydride-diol reaction, 65 Acid anhydride-epoxy reaction, 85 Acid binders, 155, 157 Acid catalysis, of PET, 548-549 Acid-catalyzed hydrolysis of nylon-6, 567-568 of nylon-6,6, 568 Acid chloride, poly(p-benzamide) synthesis from, 188-189 Acid chloride-alcohol reaction, 75-77 Acid chloride-alkali metal diphenol salt interfacial reactions, 77 Acid chloride polymerization, of polyamides, 155-157 Acid chloride-terminated polyesters, reaction with hydroxy-terminated polyethers, 89 Acid-etch tests, 245 Acid number, 94 Acidolysis, 74 of nylon-6,6, 568... [Pg.575]

Another hydroxylation reaction is the Elbs reaction In this method, phenols can be oxidized to p-diphenols with K2S20g in alkaline solution. Primary, secondary, or tertiary aromatic amines give predominant or exclusive ortho substitution unless both ortho positions are blocked, in which case para substitution is found. The reaction with amines is called the Boyland-Sims oxidation. Yields are low with either phenols or amines, generally under 50%. The mechanisms are not clear, but for the Boyland-Sims oxidation there is evidence that the S20 ion attacks at the ipso position, and then a migration follows. ... [Pg.724]

The ortho diphenolic structure of apomorphine makes it a strongly reducing substance hence, in acid medium it forms the blue colored or//io-qulnone (6) with iodine or other oxidizing agent which is in equilibrium with its zwitterionic limiting structure (7) (Pellargi s reaction [14]). [Pg.40]

In 1996, Cavell described the synthesis of neutral P(VI) compound 37 containing a divalent tridentate diphenol imine ligand and three chlorine atoms by the reaction of a bis silylated Schiff base with PCI5 to give 37 after elimination of two equivalents of Me3SiCl (Scheme 7) [51]. [Pg.13]

Illustrative Procedure 2 Poly(iminocarbonates) by Solution Polymerization (46) Under argon, 1 g of a diphenol and an exact stoichiometric equivalent of a dicyanate were dissolved in 5 ml of freshly distilled THF. 1 mol% of potassium tert-butoxide was added, and the reaction was stirred for 4 hr at room temperature. Thereafter, the poly(iminocarbonate) was precipitated as a gumUke material by the addition of acetone. The crude poly(iminocarbonate) can be purified by extensive washings with an excess of acetone. The molecular weight (in chloroform, relative to polystyrene standards by GPC) is typically in the range of 50,000-80,000. [Pg.217]

This feature of the interfacial preparation of poIy(iminocarbon-ates) has an important consequence for the synthesis of copolymers if the dicyanate component is structurally different from the diphenol, partial hydrolysis of the dicyanate will lead to the presence of two structurally different diphenol components that will compete for the reaction with the remaining dicyanate. The interfacial copolymerization will therefore result in a random copolymer. On the other hand, during solution polymerization no hydrolysis can occur. Since the dicyanates can only react with diphenols and vice versa, solution polymerization results in the formation of a strictly alternating copolymer. [Pg.217]

Lillie RD, Pizzolato P, Dessauer HC, et al. Histochemical reactions at tissue arginine sites with alkaline solutions of /J-naphthoquinone-4-sodium sulfonate and other o-quinones and oxidized o-diphenols. J. Histochem. Cytochem. 1971 19 487 197. [Pg.217]

Polyphenoloxidase (PPO, EC 1.14.18.1) is one of the most studied oxidative enzymes because it is involved in the biosynthesis of melanins in animals and in the browning of plants. The enzyme seems to be almost universally distributed in animals, plants, fungi, and bacteria (Sanchez-Ferrer and others 1995) and catalyzes two different reactions in which molecular oxygen is involved the o-hydroxylation of monophenols to o-diphenols (monophenolase activity) and the subsequent oxidation of 0-diphenols to o-quinones (diphenolase activity). Several studies have reported that this enzyme is involved in the degradation of natural phenols with complex structures, such as anthocyanins in strawberries and flavanols present in tea leaves. Several polyphenols... [Pg.105]

There is an irreversible enzymatic inactivation reaction, which occurs during the oxidation of the cyclizable and noncyclizable diphenols to oquinones. This inactivation process has been interpreted as being the result of a direct attack of an o-quinone on a nucleophilic residue (His) near the active enzyme center or of an attack of a copper-bound hydroxyl radical generated by the Cu(I)-peroxide complex. However, the latter hypothesis seems to be more probable, because inactivation also occurs in the presence of reducing agents that remove the o-quinones generated. [Pg.108]


See other pages where Diphenols, reactions is mentioned: [Pg.95]    [Pg.95]    [Pg.64]    [Pg.295]    [Pg.152]    [Pg.10]    [Pg.77]    [Pg.79]    [Pg.83]    [Pg.338]    [Pg.120]    [Pg.14]    [Pg.218]    [Pg.218]    [Pg.219]    [Pg.13]    [Pg.156]    [Pg.158]    [Pg.166]    [Pg.467]    [Pg.472]    [Pg.108]   
See also in sourсe #XX -- [ Pg.733 ]




SEARCH



Diphenol

Diphenols

© 2024 chempedia.info