Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Irreversible enzymatic

A classical approach to driving the unfavorable equilibrium of an enzymatic process is to couple it to another, irreversible enzymatic process. Griengl and coworkers have applied this concept to asymmetric synthesis of 1,2-amino alcohols with a threonine aldolase [24] (Figure 6.7). While the equilibrium in threonine aldolase reactions typically does not favor the synthetic direction, and the bond formation leads to nearly equal amounts of two diastereomers, coupling the aldolase reaction with a selective tyrosine decarboxylase leads to irreversible formation of aryl amino alcohols in reasonable enantiomeric excess via a dynamic kinetic asymmetric transformation. A one-pot, two-enzyme asymmetric synthesis of amino alcohols, including noradrenaline and octopamine, from readily available starting materials was developed [25]. [Pg.131]

There is an irreversible enzymatic inactivation reaction, which occurs during the oxidation of the cyclizable and noncyclizable diphenols to oquinones. This inactivation process has been interpreted as being the result of a direct attack of an o-quinone on a nucleophilic residue (His) near the active enzyme center or of an attack of a copper-bound hydroxyl radical generated by the Cu(I)-peroxide complex. However, the latter hypothesis seems to be more probable, because inactivation also occurs in the presence of reducing agents that remove the o-quinones generated. [Pg.108]

Enzymes are more commonly involved in the reaction of two substrates to form products. In this problem, analyze the specific case of the ping pong hi hi mechanism [W. W. Cleland, Biochim. Biophys. Acta, 67 (1963) 104] for the irreversible enzymatic conversion of... [Pg.129]

Scheme 3.4 Irreversible enzymatic acylation using enol esters and acid anhydrides... Scheme 3.4 Irreversible enzymatic acylation using enol esters and acid anhydrides...
Besides the more often-used acyl donors mentioned above, others which would also ensure an irreversible type of reaction have been investigated [170]. Bearing in mind that most of the problems of irreversible enzymatic acyl transfer arise from the formation of unavoidable byproducts, emphasis has been put on finding acyl donors that possess cyclic structures, which would not liberate any byproducts at all. However, with candidates such as lactones, lactams, cyclic anhydrides (e.g., succinic acid anhydride [171]), enol lactones (e.g., diketene [172, 173]), and oxazolin-5-one derivatives [174], the drawbacks often outweighed their merits. [Pg.330]

The study of rapid consecutive irreversible enzymatic transformations such as A— C— D in homogeneous solution presents... [Pg.316]

The enzyme class which has received the most increase in attention in industrial and synthetic applications since 2000 is (o-transaminases, in which a suitable inexpensive amino-donor 16 is used to convert a C=0 group of a prochiral substrate 15 into chiral amine 17. In order to shift the equilibrium to the desired amine product, the keto by-product 18 is usually converted in a second irreversible enzymatic step into an iimocent side product 19 (Scheme 15.3). [Pg.522]

The most satisfactory method to carry out an irreversible transesterification is the reaction of acylation of an alcohol with vinyl acylates [130,131]. In this reaction the back reaction is prevented by the irreversible tautomerization of vinyl alcohol to acet dehyde. This latest product could cause the inhibition of the enzyme that has been hnmobilized to overcome this complication [132]. In some studies, however, a few cycles of reactions could be performed without affecting the enantioselectivity of the reaction [133]. Also oxime esters have been proposed as acyl transfer agents [134] for irreversible enzymatic transesterifications (Scheme 23). [Pg.426]

Numerous resolutions of cyclic alcohols by means of the irreversible enzymatic transesterification procedure have been reported in the recent literature. The cyclic substrates... [Pg.437]

Solutions of methylceUuloses are pseudoplastic below the gel point and approach Newtonian flow behavior at low shear rates. Above the gel point, solutions are very thixotropic because of the formation of three-dimensional gel stmcture. Solutions are stable between pH 3 and 11 pH extremes wiU cause irreversible degradation. The high substitution levels of most methylceUuloses result in relatively good resistance to enzymatic degradation (16). [Pg.276]

In contrast to the hydrolysis of prochiral esters performed in aqueous solutions, the enzymatic acylation of prochiral diols is usually carried out in an inert organic solvent such as hexane, ether, toluene, or ethyl acetate. In order to increase the reaction rate and the degree of conversion, activated esters such as vinyl carboxylates are often used as acylating agents. The vinyl alcohol formed as a result of transesterification tautomerizes to acetaldehyde, making the reaction practically irreversible. The presence of a bulky substituent in the 2-position helps the enzyme to discriminate between enantiotopic faces as a result the enzymatic acylation of prochiral 2-benzoxy-l,3-propanediol (34) proceeds with excellent selectivity (ee > 96%) (49). In the case of the 2-methyl substituted diol (33) the selectivity is only moderate (50). [Pg.336]

Enzymatic reactions frequently undergo a phenomenon referred to as substrate inhibition. Here, the reaction rate reaches a maximum and subsequently falls as shown in Eigure 11-lb. Enzymatic reactions can also exhibit substrate activation as depicted by the sigmoidal type rate dependence in Eigure 11-lc. Biochemical reactions are limited by mass transfer where a substrate has to cross cell walls. Enzymatic reactions that depend on temperature are modeled with the Arrhenius equation. Most enzymes deactivate rapidly at temperatures of 50°C-100°C, and deactivation is an irreversible process. [Pg.838]

If the inhibitor combines irreversibly with the enzyme—for example, by covalent attachment—the kinetic pattern seen is like that of noncompetitive inhibition, because the net effect is a loss of active enzyme. Usually, this type of inhibition can be distinguished from the noncompetitive, reversible inhibition case since the reaction of I with E (and/or ES) is not instantaneous. Instead, there is a time-dependent decrease in enzymatic activity as E + I El proceeds, and the rate of this inactivation can be followed. Also, unlike reversible inhibitions, dilution or dialysis of the enzyme inhibitor solution does not dissociate the El complex and restore enzyme activity. [Pg.447]

However, considering practical limitations, that is, the availability of optically pure enantiomers, E values are more commonly determined on racemates by evaluating the enantiomeric excess values as a function of the extent of conversion in batch reactions. For irreversible reactions, the E value can be calculated from Equation 1 (when the enantiomeric excess ofthe product is known) or from Equation 2 (when the enantiomeric excess ofthe substrate is knovm) [la]. For reversible reactions, which may be the case in enzymatic resolution carried out in organic solvents (especially at extents of conversion higher than 40%), Equations 3 or 4, in which the reaction equilibrium constant has been introduced, should be used [lb]. [Pg.3]

By this concept, a reversible enzymatic aldol reaction generates a mixture of l-threo/erythro aldol diastereomers (133) from which the i-threo isomer is preferentially decomposed by an irreversible decarboxylation to furnish aromatic aminoalcohol (R)-(134) vhth 78% ee in high yield. [Pg.310]

In order to give useful information about an enzyme, a conformationally restricted active-site-directed analog inhibitor need not bind to the enzyme irreversibly. In a study of the enzyme fructose 1,6-diphosphatase from rabbit liver, Benkovic et al, have investigated the question of the reactive form of the fructose 1,6-diphosphate in the enzymatic process (104,105). Three likely forms are shown in structures 50, 51 and 52. [Pg.406]

Gold and Linder (17) studied the esterase catalyzed hydrolysis of A-(-)-acetoxymethyl-(l-phenylethyl)nitrosamine. They found that the stereochemistry of 1-phenylethanol produced in the reaction was the same as that observed in the base catalyzed hydrolysis of the nitrosamine and also of N-(l-phenylethyl)nitrosocarbamate. These results indicated that the same diazotate was produced in all three reactions. The fact that no irreversible inhibition of the enzymatic hydrolysis of the nitrosamine was observed, while extensive irreversible inhibition was obtained with the nitrosocarba-mate, led these workers to conclude that the a-hydroxynitro-samine produced by the hydrolysis had sufficient stability to diffuse away from the active site of the enzyme. [Pg.6]

Mutagenesis of known enzyme towards a desired activity will be the fastest developing direction. The use of mutants of simple serine-hydrolases, which exhibit the phosphotriesterase activity (in contrast to the native enzymes, which are irreversibly inhibited under such conditions), clearly shows that practically any kind of substrates can be enzymatically transformed. The... [Pg.198]

The well-known fact that in irreversibly damaged cells, respiratory control is lost and is accompanied by oxidation of cytochromes a and as, as well as NADH (Taegtmeyer et al., 1985), was originally thoug it to be due to substrate deficiency (Chance and Williams, 1955) but may be due to an enzymatic defect resulting in an inability to metabolize NADH-linked substrates (Pelican etal., 1987). It seems likely therefore that return of function is dependent on preservation of mitochondrial membrane integrity, and the structure and activities of respiratory chain (R.C) complexes I-IV (Chance and Williams, 1955). [Pg.92]

More recent detailed kinetic investigations have revealed that actinonin is a time-dependent, essentially irreversible, inhibitor of PDF enzymatic activity [72]. This study demonstrated that the kinetics of inhibition of... [Pg.121]

Mechanism-based inactivation results in formation of a covalent adduct between the active inhibitor and the enzyme, or between the active inhibitor and a substrate or cofactor molecule. If the mechanism involves covalent modification of the enzyme, then one should not be able to demonstrate a recovery of enzymatic activity after dialysis, gel filtration, ultrafiltration, or large dilution, as described in Chapters 5 to 7. Additionally, if the inactivation is covalent, denaturation of the enzyme should fail to release the inhibitory molecule into solution. If a radiolabeled version of the inactivator is available, one should be able to demonstrate irreversible association of radioactivity with the enzyme molecule even after denaturation and separation by gel filtration, and so on. In favorable cases one should likewise be able to demonstrate covalent association of the inhibitor with the enzyme by a combination of tryptic digestion and LC/MS methods. [Pg.230]

Piper and Fenton [10] indicated that extreme acidity or basicity of the gastric juice denaturalize the enzymatic activity of the pepsin, which shows has a higher activity at a pH = 2. At pH = 5 the enzyme starts to deactivate and at pH= 7, the enzyme irreversibly lose its activity. Fig. 3 shows the pepsin UV-visible spectra before and after interaction with the zeolites while Fig 4 shows the enzymatic activity of the denatured hemoglobin proteolysis versus reaction time. [Pg.147]


See other pages where Irreversible enzymatic is mentioned: [Pg.290]    [Pg.479]    [Pg.281]    [Pg.281]    [Pg.412]    [Pg.270]    [Pg.290]    [Pg.479]    [Pg.281]    [Pg.281]    [Pg.412]    [Pg.270]    [Pg.229]    [Pg.342]    [Pg.91]    [Pg.123]    [Pg.189]    [Pg.264]    [Pg.125]    [Pg.191]    [Pg.242]    [Pg.214]    [Pg.299]    [Pg.871]    [Pg.452]    [Pg.454]    [Pg.456]    [Pg.459]    [Pg.56]    [Pg.195]    [Pg.11]   


SEARCH



© 2024 chempedia.info