Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diisocyanates reactivity

In order to clarify the mechanism of this process, the dibenzyl diisocyanates reactivities were studied by us. For comparison reasons, the reactivity of one of the most common diisocyanates, 4,4-MDI was also investigated. [Pg.17]

The use of hydroxyethyl (also hydroxypropyl) methacrylate as a monomer permits the introduction of reactive hydroxyl groups into the copolymers. This offers the possibility for subsequent cross-linking with an HO-reactive difunctional agent (diisocyanate, diepoxide, or melamine-formaldehyde resin). Hydroxyl groups promote adhesion to polar substrates. [Pg.1013]

Following this work, the y -12F-diol was used for the direct reaction with hexamethylene-1,6-diisocyanate in the presence of dibutyltin dilaurate to produce a cross-linked elastomer or a reactive prepolymer which was terminated with either isocyanate or hydroxyl groups, depending on which reactant was in excess (142,143). [Pg.540]

Developments in aliphatic isocyanates include the synthesis of polymeric aliphatic isocyanates and masked or blocked diisocyanates for appflcafions in which volatility or reactivity ate of concern. Polymeric aliphatic isocyanates ate made by copolymerizing methacrylic acid derivatives, such as 2-isocyanatoethyl methacrylate, and styrene [100-42-5] (100). Blocked isocyanates ate prepared via the reaction of the isocyanate with an active hydrogen compound, such as S-caprolactam, phenol [108-95-2] or acetone oxime. [Pg.459]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Step-growth polymerization is characterized by the fact that chains always maintain their terminal reactivity and continue to react together to form longer chains as the reaction proceeds, ie, a -mer + -mer — (a + )-mer. Because there are reactions that foUow this mechanism but do not produce a molecule of condensation, eg, the formation of polyurethanes from diols and diisocyanates (eq. 6), the terms step-growth and polycondensation are not exactly synonymous (6,18,19). [Pg.435]

Diisocyanates or Polyisocyanates. The thiol end groups of the hquid polysulfides are quite reactive with isocyanates (eq. 3). Typical chisocyanates, such as 1,3-toluene chisocyanate (m-TDl) and diphenylmethane-4,4 -diisocyanate (MDl), ate effective in curing hquid polysulfides. Using hquid polysulfides in-... [Pg.456]

Polymers. The molecular weights of polymers used in high energy electron radiation-curable coating systems are ca 1,000—25,000 and the polymers usually contain acryUc, methacrylic, or fumaric vinyl unsaturation along or attached to the polymer backbone (4,48). Aromatic or aUphatic diisocyanates react with glycols or alcohol-terrninated polyether or polyester to form either isocyanate or hydroxyl functional polyurethane intermediates. The isocyanate functional polyurethane intermediates react with hydroxyl functional polyurethane and with acryUc or methacrylic acids to form reactive p olyurethanes. [Pg.428]

Polyurethane Formation. The key to the manufacture of polyurethanes is the unique reactivity of the heterocumulene groups in diisocyanates toward nucleophilic additions. The polarization of the isocyanate group enhances the addition across the carbon—nitrogen double bond, which allows rapid formation of addition polymers from diisocyanates and macroglycols. [Pg.342]

Because of steric effects, TMXDI is less reactive than the trifunctional derivatives of hexamethylene diisocyanate (HDI) (1,6-diisocyanatohexane)... [Pg.335]

Stmctural and chemical modification of urethane containing polymer matri-ces with macrocycles - calixarenes having reactive hydrazide groups have been carried out and stmcture, physico chemical and sensor properties of polyure-thanesemicarbazides (PUS) synthesised have been studied. The polymers obtained (on the base of polypropylene glycol MM 1000 and polysiloxane diol MM 860, hexamethylene diisocyanate and calixarene dihydrazide) are identified by IR-spectroscopy, size exclusion chromatography (SEC), DSC, WAXS and SAXS methods. [Pg.327]

Toluene diisocyanate Midget impinger 15 ml Marcali solution 1 25 95 Diazotlzation and coupling reaction Materials containing reactive hydrogen attached to oxygen (phenol) certain other diamines... [Pg.184]

In certain niche applications, aliphatic isocyanates, such as isophorone diisocyanate (IPDI), hexamethylene diisoeyanate (HDI), methylene 4,4 -biscyclo-hexylisocyanate (H12MDI), and polymeric versions of these diisocyanates, are used, e.g., in instances where light stability or reduced reactivity is needed. These isocyanates usually cost more than the aromatic diisocyanates. Thus, they are used in adhesive areas that can Justify the higher costs. [Pg.767]

Methylene dianiline is normally a very reactive diamine in the presence of diisocyanates. However, a sodium chloride complex that is relatively unreactive at room temperature is commercially available. When the complex is heated to 21°C, it activates to quickly cure the urethane [76]. [Pg.801]

Liquid organic rubbers with reactive functionality can be prepared by several methods. End-functional oligomers are preferred. Chains attached to the network at only one end do not contribute as much strength to the network as those attached at both ends [34], Urethane chemistry is a handy route to such molecules. A hydroxy-terminated oligomer (commonly a polyester or a polyether) can be reacted with excess diisocyanate, and then with a hydroxy methacrylate to form a reactive toughener [35]. The methacrylate ends undergo copolymerization with the rest of the acrylic monomers. The resulting adhesive is especially effective on poIy(vinyl chloride) shown in Scheme 2. [Pg.831]

From these, prepolymers are prepared where the diisocyanates may be completely reacted as in the case of the urethane oils which resemble the oil-modified alkyds but have urethane (—NHCOO—) links in place of the ester (—COO—) links of the alkyds, or where one only of the isocyanate groups is combined, leaving the other to participate in crosslinking reactions. Such a reactive prepolymer is the biuret that may be prepared from hexamethylene diisocyanate, has the following structure ... [Pg.680]

Such reactive isocyanates always contain about 1% by weight of free diisocyanate monomer which is highly toxic, therefore when in use ventilation... [Pg.680]

A special situation is created in a polymerization of isolated dienes or similar compounds like diisocyanates. Addition of such a monomer to a growing polymeric chain leaves its second reactive unit in the vicinity of the active center. Consequently, the addition of this unit is favored to the addition of any other unit, and in fact it is governed by a unimolecular and not bimolecular kinetic law. Its addition leads to the formation of a ring, and if ring closure is... [Pg.163]

Diisocyanates are highly reactive and readily available compounds. The diisocyanates and acids form amides with the liberation of carbon dioxide side reactions are possible as diisocyanates can also react with an amide group. [Pg.184]

The above prepolymer on treatment with 2 as the chain extender in dry DMF did not proceed at ambient temperature. The mixture had to be heated to 60°C for 3 h before the reaction was complete. After curing at 60°C for 24 h, the yellow, translucent block polyurethane film (BPUR2) again showed the absence of the —NCO peak in the IR spectrum indicating that curing had been complete. The fact that a higher temperature had to be used in the case of 2 as the chain extender compared to 1 is in keeping with the lower order of reactivity of diols with diisocyanates as compared to diamines with diisocyanates. [Pg.446]

The reaction rates of diisocyanates are strongly influenced by their molecular structure. The reactivity of isocyanate groups is enhanced by adjacent electron-withdrawing substituents. Aromatic rings are very effective electron withdrawing groups, and it is for this reason that the majority of commercial diisocyanates are aromatic. Many of the diisocyanates used commercially consist of mixtures of isomers. Some of the more important commercial diisocyanates are illustrated in Fig. 25.6. Diisocyanates must be handled carefully to avoid exposing workers to their hazardous vapors. [Pg.386]

Poly(boronic carbamatejs were prepared by alkoxyboration polymerization of diisocyanates with mesityldimethoxyborane (scheme 33).59 The polymers obtained have boronic carbamate functions in their repeating units and can be expected to be novel reactive polymers. First, alkoxyboration polymerization between mesityldimethoxyborane and 1,6-hexamethylene diisocyanate was examined, and the optimized reaction conditions were bulk reactions at 140°C. Both aliphatic and aromatic diisocyanates gave the corresponding polymers. When aromatic diisocyanates were employed, the... [Pg.157]

Telechelic polymers rank among the oldest designed precursors. The position of reactive groups at the ends of a sequence of repeating units makes it possible to incorporate various chemical structures into the network (polyether, polyester, polyamide, aliphatic, cycloaliphatic or aromatic hydrocarbon, etc.). The cross-linking density can be controlled by the length of precursor chain and functionality of the crosslinker, by molar ratio of functional groups, or by addition of a monofunctional component. Formation of elastically inactive loops is usually weak. Typical polyurethane systems composed of a macromolecular triol and a diisocyanate are statistically simple and when different theories listed above are... [Pg.131]


See other pages where Diisocyanates reactivity is mentioned: [Pg.54]    [Pg.54]    [Pg.234]    [Pg.417]    [Pg.42]    [Pg.311]    [Pg.313]    [Pg.73]    [Pg.228]    [Pg.156]    [Pg.189]    [Pg.780]    [Pg.731]    [Pg.826]    [Pg.181]    [Pg.167]    [Pg.221]    [Pg.393]    [Pg.388]    [Pg.156]    [Pg.136]    [Pg.378]    [Pg.378]    [Pg.551]    [Pg.664]   
See also in sourсe #XX -- [ Pg.21 , Pg.23 ]




SEARCH



Diisocyan

© 2024 chempedia.info