Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion electrodeposition

As well as electrodissolution and electrodeposition, periphery and surface diffusion play important roles. [Pg.315]

Pt electrodeposits may also be produced from molten salt electrolytes. Such a high-temperature process has the advantage that the deposits are diffusion bonded to the titanium substrate and thus have good adhesion, and, if necessary, thick deposits can be produced. However, they have the disadvantage that because of the complexity of the process there is a limitation on the size and shape of the object to be plated, and the resultant deposits are softer and less wear resistant than those from aqueous solutions... [Pg.166]

Couch, D. E. and Connor, J. H., Nickel-Aluminium Alloy Coatings Produced by Electrodeposition and Diffusion , J. Electrochem. Soc., 107, 272 (1960)... [Pg.481]

The induced co-deposition concept has been successfully exemplified in the formation of metal selenides and tellurides (sulfur has a different behavior) by a chalcogen ion diffusion-limited process, carried out typically in acidic aqueous solutions of oxochalcogenide species containing quadrivalent selenium or tellurium and metal salts with the metal normally in its highest valence state. This is rather the earliest and most studied method for electrodeposition of compound semiconductors [1]. For MX deposition, a simple (4H-2)e reduction process may be considered to describe the overall reaction at the cathode, as for example in... [Pg.80]

If the electrolysis parameters (precursor concentrations, pH, temperature, cur-rent/potential, substrate) be defined in a precise manner, a self-regulated growth of the compound can be established, and highly (111 )-oriented zinc blende (ZB) deposits up to several p,m thickness are obtained at potentials lying at the anodic limit of the diffusion range (Fig. 3.3) [60]. Currently, the typical method of cathodic electrodeposition has been developed to yield quite compact and coherent, polycrystalline, ZB n-CdSe films of well-defined stoichiometry. The intensity of the preferred ZB(f 11) orientation obtained with as-deposited CdSe/Ni samples has been quite high [61]. [Pg.94]

Fig. 3.3 Zinc blende (111) XRD reflections vs. deposition potential, for 2 xm thick CdSe films electrodeposited from a pH 2 bath on Ni cathode, at the indicated potentials within the diffusion-limited region. (With kind permission from Springer Science+Business Media [60])... Fig. 3.3 Zinc blende (111) XRD reflections vs. deposition potential, for 2 xm thick CdSe films electrodeposited from a pH 2 bath on Ni cathode, at the indicated potentials within the diffusion-limited region. (With kind permission from Springer Science+Business Media [60])...
By electrodeposition of CuInSe2 thin films on glassy carbon disk substrates in acidic (pH 2) baths of cupric ions and sodium citrate, under potentiostatic conditions [176], it was established that the formation of tetragonal chalcopyrite CIS is entirely prevalent in the deposition potential interval -0.7 to -0.9 V vs. SCE. Through analysis of potentiostatic current transients, it was concluded that electrocrystallization of the compound proceeds according to a 3D progressive nucleation-growth model with diffusion control. [Pg.117]

Takahashi et al. [220] first reported the formation of Bi-Te alloy films with varying chemical composition by means of cathodic electrodeposition from aqueous nitric acid solutions (pH 1.0-0.7) containing Bi(N03)3 and Te02. The electrodeposition took place on Ti sheets at room temperature under diffusion-limited conditions for both components. In a subsequent work [221], it was noted that the use of the Bi-EDTA complex in the electrolyte would improve the results, since Bi " is easily converted into the hydrolysis product, Bi(OH)3, a hydrous polymer, thus impairing the reproducibility of electrodeposition. The as-produced films were found to consist of mixtures of Te and several Bi-Te alloy compounds, such as Bi2Tc3, Bi2+xTe3 x, Bi Tee, and BiTe. Preparation of both n- and p-type Bi2Te3 was reported in this and related works [222]. [Pg.128]

Another example is dendritic crystal growth under diffusion-limited conditions accompanied by potential or current oscillations. Wang et al. reported that electrodeposition of Cu and Zn in ultra-thin electrolyte showed electrochemical oscillation, giving beautiful nanostmctured filaments of the deposits [27,28]. Saliba et al. found a potential oscillation in the electrodeposition of Au at a liquid/air interface, in which the Au electrodeposition proceeds specifically along the liquid/air interface, producing thin films with concentric-circle patterns at the interface [29, 30]. Although only two-dimensional ordered structures are formed in these examples because of the quasi-two-dimensional field for electrodeposition, very recently, we found that... [Pg.241]

More than 20 years ago, Matsushita et al. observed macroscopic patterns of electrodeposit at a liquid/air interface [46,47]. Since the morphology of the deposit was quite similar to those generated by a computer model known as diffusion-limited aggregation (D LA) [48], this finding has attracted a lot of attention from the point of view of morphogenesis in Laplacian fields. Normally, thin cells with quasi 2D geometries are used in experiments, instead of the use of liquid/air or liquid/liquid interfaces, in order to reduce the effect of convection. [Pg.250]

Johans et al. derived a model for diffusion-controlled electrodeposition at liquid-liquid interface taking into account the development of diffusion fields in both phases [91]. The current transients exhibited rising portions followed by planar diffusion-controlled decay. These features are very similar to those commonly observed in three-dimensional nucleation of metals onto solid electrodes [173-175]. The authors reduced aqueous ammonium tetrachloropalladate by butylferrocene in DCE. The experimental transients were in good agreement with the theoretical ones. The nucleation rate was considered to depend exponentially on the applied potential and a one-electron step was found to be rate determining. The results were taken to confirm the absence of preferential nucleation sites at the liquid-liquid interface. Other nucleation work at the liquid-liquid interface has described the formation of two-dimensional metallic films with rather interesting fractal shapes [176]. [Pg.230]

In order to provide for purification of the electrolyte, diaphragm cells are used to form separate anode and cathode compartments, and the anodes are encased in loose-fitting, open-weave bags to facilitate the removal of slime with the anodes. The anolyte is continuously taken out, purified and fed into the cathode compartments where nickel electrodeposits on the cathodes. A small hydrostatic head of purified electrolyte in the cathode compartment is maintained in order to prevent the diffusion of anolyte with its impurities into the cathode compartments. [Pg.724]

The quality of an elemental deposit is a function of the deposition rate, surface diffusion, the exchange current and the substrate structure. Electrodeposition of a compound thin-film not only requires all these things, but stoichiometry as well. Under ideal conditions, the mass transfer rates and discharge rates of two elemental precursors can be tuned to produce a deposit with the correct overall stoichiometry for a compound. Whether the two elements will form the right compound, or a compound at all, is another question. [Pg.6]

Cerisier et al examined copper electrodeposits over a range of scales from 6 nm to 10 pm [78], They obtained a = 0.33 and j> = 0.46 for deposition on silicon from pyrophosphate solution, and concluded that growth occurs at three dimensional centers with little surface diffusion. [Pg.171]


See other pages where Diffusion electrodeposition is mentioned: [Pg.373]    [Pg.338]    [Pg.99]    [Pg.297]    [Pg.298]    [Pg.299]    [Pg.313]    [Pg.316]    [Pg.287]    [Pg.48]    [Pg.341]    [Pg.368]    [Pg.454]    [Pg.80]    [Pg.98]    [Pg.107]    [Pg.111]    [Pg.120]    [Pg.676]    [Pg.245]    [Pg.41]    [Pg.353]    [Pg.708]    [Pg.116]    [Pg.236]    [Pg.592]    [Pg.5]    [Pg.80]    [Pg.153]    [Pg.154]    [Pg.164]    [Pg.165]    [Pg.166]    [Pg.166]    [Pg.171]    [Pg.171]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



Electrodeposition

Electrodeposits

© 2024 chempedia.info